
Filters

Michael A. Bender

Time To Change Your Filter

Michael A. Bender

Dictionary Data Structure

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

member(a):a
c

b
d

S

U

member(b):
member(c):
member(d):

✔︎

⨯
✔︎

⨯

Filter Data Structure

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

member(a):a
c

b
d

S

U

member(b):
member(c):
member(d): false  

positive

✔︎

⨯
✔︎

✔︎

A Filter Guarantees a False-Positive Rate ε

if q ∈ S, return

{ with probability > 1 − ε
 with probability ≤ ε

 with probability 1

if q ∉ S, return
false positive

true positive

true negative

one-sided errors

✔︎

⨯
✔︎

False-positive rate enables filters to be compact

space ≥ n log(1/ε) space = Ω(n log |U |)

 Filter Dictionary

 Talk So Far

• Filter data structure

• Next: the Bloom filter [Bloom ’70]

Bloom filter: a bit array + k hash functions.

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a b c d

(Here k=2.)

Bloom filter: a bit array + k hash functions.

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a b c d

1 1 h1(a)=1
h2(a)=3

(Here k=2.)

Bloom filter: a bit array + k hash functions.

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a bc d

1 1 1 h1(a)=1
h2(a)=3

h1(c)=5
h2(c)=3

(Here k=2.)

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a bc d

1 1 1

(Here k=2.)

Bloom filters don’t support delete.

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a bc d

1 1 1
h1(b)=2
h2(b)=5

(Here k=2.)

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a bc d

1 1 1
h1(d)=3
h2(d)=1

(Here k=2.)

false positive

Classic Filter: The Bloom Filter

Bloom filter: a bit array + k hash functions.Bloom filter: a bit array + k hash functions.

[Bloom ’70]

S
U

0 0 0 0 0 0 0

a bc d

1 1 1

(Here k=2.)

1

h1(c)=5
h2(c)=3

Bloom filters don’t support delete.
Issue: on a delete, which 1s get decremented?

Bloom Filter Space Usage

Bloom filter space with false-positive rate ε:  
 ≈1.44 lg (1/ε) bits/element.

Example:  
 For ε = 2%,  
 bits/element ≈ 8.

Common rule of thumb:  
 Bloom filters take about 1 byte/element.

[Bloom ’70]

Bloom filters are ubiquitous

Computational biology

Databases

Networking

Storage systems

Streaming applications

≥4300 citations

• Filter data structure

• The Bloom filter

• How filters are used

 Talk So Far

[Bloom ’70]

Most Common Filter Use
Filter out queries to a large remote dictionary.

Only an ε-fraction of negative
queries don’t get filtered out.

a
b
c
d
e
f

Filter
local, e.g., in RAM

Dictionary
remote, e.g., on disk

c

✔︎

⨯

✔︎

⨯

⨯
⨯

✔︎
⨯

Speedup from Filter Use

Workload has P positive and N negative queries.

Dictionaries w/o
Filters

Dictionaries w/
Filters

P+N P+εN

Remote Accesses of Dictionary

Example: Filters Help Queries in LSM Trees

Log-structured merge tree (LSM)
• An LSM tree supports fast inserts by  

partitioning into independent dictionaries.

⨯

⨯

✔︎

⨯

⨯

⨯

[O'Neil, Cheng, Gawlick, O'Neil '96]

Point queries are slow without filters.

• Filter data structure

• The Bloom filter

• How filters are used

• Time to change your filter 

 Talk So Far

[Bloom ’70]

(the talk title)

Application must work around limited Bloom filter capabilities

Limitations Work-arounds
No deletes Rebuild
No resizes Guess N, and rebuild if wrong
No filter merging  
nor enumeration of
elements

???

No values associated
with keys

Combine with other data structure

Bloom filter limitations increase system complexity,
waste space, and slow down application performance.

Bloom filters also have suboptimal guarantees

Bloom filter limitations increase system complexity,
waste space, and slow down application performance.

Bloom filter Optimal
Space ≈ 1.44 n lg(1/ε) ≈ n lg(1/ε) + O(1)

CPU cost Ω(lg(1/ε)) O(1)

Data locality Ω(lg(1/ε)) probes O(1) probes

Tons of Research on Extending/Improving/Replacing Bloom Filters

Deletes + counting

Keys

Filters on SSD

Optimizing asymptotics

Engineering

Adaptivity

[Pagh, Pagh, Rao 05],  
[Arbitman, Naor, Segev 10], 
[Lovett & Porat 10], 
[Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18]

[Bonomi, Mitzenmacher, Panigrahy, Singh, Varghese 06],  
[Yuan, Miao, Jia, Wang 08],  
[Pandey, Bender, Patro, Johnson SIGMOD 17],

[Chazelle, Kilian, Rubinfeld, Tal 04]

[Canim, Mihaila, Bhattacharhee, Lang, Ross 10],  
[Debnath, Sengupta, Lilja, Du 11], [Lu, Debnath, Du. 11], [Bender, Farach-Colton, Johnson,
Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12],  
[Pandey, Singh, Bender, Berry, Farach-Colton, Johnson, Kroeger, Phillips 20]

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12],  
[Fan, Andersen, Kaminsky, Mitzenmacher 14],  
[Pandey, Bender, Patro, Johnson SIGMOD 17],  
[Pandey, Bender, Johnson, Patro 17],  
[Breslow, Jayasena 18],  
[Pandey, Conway, Durie, Bender, Martin, Johnson 21]

When too much stuff is growing on your filter, it’s
time to change the filter.

[Mitzenmacher, Pontarelli, Reviriego 18] 
[Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18] 
[Bender, Das, Farach-Colton, Mo, Wang 21]

• Filter data structure

• The Bloom filter

• How filters are used

• Time to change your filter

 Talk So Far

[Bloom ’70]

(the talk title)

Message of Talk

Message of Talk

Message of Talk

Message of Talk

• Tutorial-like introduction to filters.

• General techniques for solving filter problems.

This Talk: It’s Time to Change Your Filter

fingerprinting quotienting collision resolution

• Tutorial-like introduction to filters.

• General techniques for solving filter problems.

This Talk: It’s Time to Change Your Filter

fingerprinting quotienting collision resolution
collusion

• Tutorial-like introduction to filters.

• General techniques for solving filter problems.

This Talk

fingerprinting quotienting collision resolution

Fingerprinting

{x1, x2, …, xn}
Filter = { h(x1), h(x2), …, h(xn)}

F = { h(x1), h(x2), …, h(xn)} S = {x1, x2, …, xn}

h(S) = { h(x1), h(x2), …, h(xn)}

F can be stored more compactly than a Bloom filter.

Filter F of set S : {h(x) |x ∈ S}

[Cleary 84] [Pagh, Pagh, Rao 05], [Arbitman, Naor, Segev 10], 
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes,
Shetty, Spillane, Zadok 12], [Fan, Andersen, Kaminsky, Mitzenmacher 14],
[Pandey, Bender, Johnson, Patro 17],

[Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18]

fingerprinting

Fingerprinting

{x1, x2, …, xn}
Filter = { h(x1), h(x2), …, h(xn)}

F = { h(x1), h(x2), …, h(xn)} S = {x1, x2, …, xn}

h(S) = { h(x1), h(x2), …, h(xn)}

F can be stored more compactly than a Bloom filter.

Filter F of set S : {h(x) |x ∈ S}

F is also just dictionary—just a more compact one.

[Cleary 84] [Pagh, Pagh, Rao 05], [Arbitman, Naor, Segev 10], 
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes,
Shetty, Spillane, Zadok 12], [Fan, Andersen, Kaminsky, Mitzenmacher 14],
[Pandey, Bender, Johnson, Patro 17],

[Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18]

fingerprinting

Fingerprinting

{x1, x2, …, xn}
Filter = { h(x1), h(x2), …, h(xn)}

F = { h(x1), h(x2), …, h(xn)} S = {x1, x2, …, xn}

h(S) = { h(x1), h(x2), …, h(xn)}

Filter F of set S : {h(x) |x ∈ S}

member(x) = {✓ if h(x) ∈ F
× if h(x) ∉ F

[Cleary 84] [Pagh, Pagh, Rao 05], [Arbitman, Naor, Segev 10], 
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes,
Shetty, Spillane, Zadok 12], [Fan, Andersen, Kaminsky, Mitzenmacher 14],
[Pandey, Bender, Johnson, Patro 17],

[Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18]

fingerprinting

Fingerprinting

{x1, x2, …, xn}
Filter = { h(x1), h(x2), …, h(xn)}

F = { h(x1), h(x2), …, h(xn)} S = {x1, x2, …, xn}

h(S) = { h(x1), h(x2), …, h(xn)}

F can be stored more
compactly than 
a Bloom filter.

Filter F of set S : {h(x) |x ∈ S}

member(x) = {✓ if h(x) ∈ F
× if h(x) ∉ F

[Cleary 84] [Pagh, Pagh, Rao 05], [Arbitman, Naor, Segev 10], 
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes,
Shetty, Spillane, Zadok 12], [Fan, Andersen, Kaminsky, Mitzenmacher 14],
[Pandey, Bender, Johnson, Patro 17],

[Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18]

fingerprinting

False-Positive Analysis for Fingerprinting

Fingerprint collisions: only source of false positives.

{x1, x2, …, xn}
Filter = { h(x1), h(x2), …, h(xn)}

F = { h(x1), h(x2), …, h(xn)} S = {x1, x2, …, xn}

h(S) = { h(x1), h(x2), …, h(xn)}

y is a false positive  
if ∃ xi h(y)=h(xi), but y ∉ S.

member(y)=✔︎  
if h(y) ∈ F.

fingerprinting

False-Positive Analysis for Fingerprinting

log(n /ε) bits
x h(x)

≥ log(|U |) bits

Pr[x and y collide] =
1

2log(n/ε)
=

ε
n

fingerprinting

False-Positive Analysis for Fingerprinting

log(n /ε) bits

Pr[y ∉ S is a false positive] ≤ ε

Pr[x and y collide] =
1

2log(n/ε)
=

ε
n

x h(x)
≥ log(|U |) bits

fingerprinting

False-Positive Analysis for Fingerprinting

n fingerprints can be stored compactly:

log(n /ε) bits

log(1/ε) + O(1) bits/element

Pr[y ∉ S is a false positive] ≤ ε

Pr[x and y collide] =
1

2log(n/ε)
=

ε
n

x h(x)
≥ log(|U |) bits

fingerprinting

False-Positive Analysis for Fingerprinting

n fingerprints can be stored compactly:

log(n /ε) bits

log(1/ε) + O(1) bits/element

Pr[y ∉ S is a false positive] ≤ ε

Pr[x and y collide] =
1

2log(n/ε)
=

ε
n

x h(x)
≥ log(|U |) bits

fingerprinting quotienting

Compact Storage Using Quotienting [Knuth]

Space: O(lg (1/ε)) bits per element

x h(x)

a(u) b(u)

=
log n
q(x) r(x)

q(x)

r(x)

n

q(x)=location in hash table

r(x)=data stored in hash table

lg(1/ε)

fingerprinting quotienting

Compact Storage Using Quotienting [Knuth]

x h(x)

a(u) b(u)

= q(x) r(x)

q(x)

r(x)

n

q(x)=location in hash table

r(x)=data stored in hash table

q(y)

r(y)
How to deal with collisions in
the hash table?

log n lg(1/ε)

Space: O(lg (1/ε)) bits per element

O(n lg(1/ε))

Isn’t this a solved problem?

What’s wrong with out-of- 
the-box linear probing?

quotientingfingerprinting

Hash Collisions in Quotienting

Ex: 6 bit hash. 3 bits for address, 3 for data.

010

001
011

111

100

000
001
010
011
100
101
110
111

Does this element represent 100111
or 011111?

Does this element represent 001011
or 000011?

The hash is stored implicitly based on location.  
So how can we change its location? quotientingfingerprinting

Hash Collisions in Quotienting

Ex: 6 bit hash. 3 bits for address, 3 for data.

010

001
011

111

100

000
001
010
011
100
101
110
111

Does this element represent 100111
or 011111?

Does this element represent 001011
or 000011?

The hash is stored implicitly based on location.  
So how can we change its location? quotientingfingerprinting

collision  
resolution

 Talk Structure
• Filters + how filters are used + Bloom limitations

•

• Quotient filters variants
 
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul,
Medjedovic, Montes, Shetty, Spillane, Zadok 12],  
[Pandey, Bender, Johnson, Patro 17],

[Pandey, Bender, Conway, Farach-Colton, Johnson 21] 

Cuckoo filter variants
[Fan, Andersen, Kaminsky, Mitzenmacher 14],  
[Breslow, Jayasena 18]

Miscellaneous
[Pagh, Pagh, Rao 05], [Arbitman, Naor, Segev 10], [Bender,
Farach-Colton, Goswami, Johnson, McCauley, Singh 18]

uses linear proving and
Robinhood hashing

[Celis, Larson, Munro 85]

Uses Cuckoo hashing

[Pagh, Rodler 01]

Balls and bins + more advanced
hashing

fingerprinting collision resolutionquotienting

Quotient Filters

2 metadata bits per slot let us recover original location.

 [Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok VLDB 12]
[Pandey, Bender, Patro, Johnson SIGMOD 17]

000
001
010
011
100
101
110
111

111

001
010

010

001
011

1

0

1
0

0

0
1

0
0

0

0
0

1

1
1

0

1= “something is  
 hashed here”

1= “I’m hashed to the 
 same place as the  
 element before me”

collision  
resolution

Quotient Filters

2 metadata bits per slot let us recover original location.

 [Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok VLDB 12]
[Pandey, Bender, Patro, Johnson SIGMOD 17]

000
001
010
011
100
101
110
111

111

001
010

010

001
011

1

0

1
0

0

0
1

0
0

0

0
0

1

1
1

0

1= “something is  
 hashed here”

1= “I’m hashed to the 
 same place as the  
 element before me”

Remainder is in correct slot.

Remainder is mapped to same location as previous remainder.

Remainder is mapped to same location as previous remainder.

Remainder is mapped to next array position.

Remainder would map to the next position. But there’s none, so it’s empty.

Remainder is in correct slot.

Remainder is mapped to same location as previous remainder.

This is an empty slot.

Recall: no element is stored before its target position.

collision  
resolution

Quotient Filter Capabilities

k h(k)

a(u) b(u)

= q(k) r(k)

q(k)

r(k)
Θ(n)

log n 1/ε
v v v

v

Bloom limitations

No deletes or counting

No resizes

No element enumeration
or merging of filters

Keys have no values

 [Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok VLDB 12]
[Pandey, Bender, Patro, Johnson SIGMOD 17]

Quotient Filter Capabilities

k h(k)

a(u) b(u)

= q(k) r(k)

q(k)

r(k)
Θ(n)

log n 1/ε

Bloom
performance

Space ≈ 1.44 n lg(1/ε)
CPU cost Ω(lg(1/ε))
Data locality Ω(lg(1/ε)) 

 probes

 ≈ 1.44 n lg(1/ε)

 [Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok VLDB 12]
[Pandey, Bender, Patro, Johnson SIGMOD 17]

Reminder of General Approach

• Fingerprinting: key k ∈ S → h(k) ∈ F.

‣False-positives only come from fingerprint collisions.

• Quotienting: Store fingerprints in a hash table implicitly.

‣ lg n bits of fingerprint depend on hash location.

• Collision resolution:

‣E.g., using linear probing/Robinhood hashing.

‣Use metadata bits to recover each h(k).

• Designs alternatives: cuckoo, Morton, broom
‣Use a different hash table but the same general approach

quotientingfingerprinting
collision  

resolution

Cuckoo Hashing → Cuckoo Filters
[Pagh, Rodler 01]

Cuckoo hash table has 2 hash functions h1 and h2.

Each hash bucket has 4 slots.

x

h1(x)

h2(x)

[Fan, Andersen, Kaminsky, Mitzenmacher 14] [Breslow, Jayasena 18]

Cuckoo Hashing → Cuckoo Filters

Cuckoo hash table has 2 hash functions h1 and h2.

Each hash bucket has 4 slots.

If there’s no space in any of the 8 slots: 
 kick out an element, and  
 move it to the alternative location  
 (which may cause other kicks).

x

h1(x)

h2(x)

[Fan, Andersen, Kaminsky, Mitzenmacher 14] [Breslow, Jayasena 18][Pagh, Rodler 01]

Cuckoo Hashing → Cuckoo Filters

Cuckoo hash table has 2 hash functions h1 and h2.

Each hash bucket has 4 slots.

If there’s no space in any of the 8 slots: 
 kick out an element, and  
 move it to the alternative location  
 (which may cause other kicks).

x

h1(x)

h2(x)

[Fan, Andersen, Kaminsky, Mitzenmacher 14] [Breslow, Jayasena 18][Pagh, Rodler 01]

Obstacles for Cuckoo Filters

x

h1(x)

h2(x)

Q: If f(x) is kicked, how to find an alternative location 
 when we don’t store x?

A: We give up on independent hash functions.  
 The alternate location only depends on r(x).

We also give up on asymptotic correctness.

Amazingly, it works for (practical) n not too large.

Cuckoo hashing seemingly doesn’t have metadata bits.

But because there are 4 slots per cell,  
2 more fingerprint bits are stored explicitly.

[Fan, Andersen, Kaminsky, Mitzenmacher 14] [Breslow, Jayasena 18][Pagh, Rodler 01]

Quotient Filter and Cuckoo Filter Comparison

Quotient filter Cuckoo filter
good space good space

very good locality ok locality
some degradation  
at high load factors

degradation 
at high load factors

good searches very good searches
fast inserts fast inserts

supports counting, multisets,
values, deletes

complicated code code is easier

good for all n. pre-asymptotic guarantees.

fails w.h.p. large enough n

Optimal Theoretical Guarantees

Theorem: There is an optimal filter with

‣Space:

‣Error rate:

‣Operations: O(1) insert, delete, query.

(1 + o(1)) n log(1/ε) + O(n)
≤ ε

• [Pagh, Pagh, Rao 05]

• [Arbitman, Naor, and Segev 10]

• [Lovett & Porat 10]

• [Bender, Farach-Colton, Goswami, Johnson, McCauley, Singh 18] adaptive & worst case

Empirical Performance of a Vector Quotient Filter

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Vector �otient Filters: Overcoming the Time/Space Trade-O� in Filter Design

(a) Insertion (Higher is better.) (b) Deletion throughput (Higher is better.)

(c) Successful lookup (Higher is better.) (d) Random lookup (Higher is better.)

Figure 4: Insertion, deletion, and lookup performance of di�erent �lters in RAM. VQF (no sc) means that no
shortcuts during insertion. VQF (insert sc) means shortcut during insertion. Note that in Figure 4(d), the line for
VQF (no sc) is hidden behind the line for VQF (insert sc), as their performance was almost identical. VQF(insert
sc) and VQF (no sc) only show throughput up to 90% load factor because we can only �ll the vector quotient �lter
to 93% capacity.

In order to isolate the performance di�erences between
the data structures, we do not count the time required to
generate the random inputs to the �lters.

Application workload. We also measure the perfor-
mance of the data structures on workloads consisting of
equal portions of insertions, removals, and lookups when
the data structure is maintained at a high load factor (90%).
This workload is characterized as a write heavy (WH) work-
load [23] because it involves inserting and removing items
from the data structure when it is almost full. This type of
workload is often seen in real-world applications and the
performance of the data structure at a high load factor and
under a write heavy workload is critical for applications to
scale.
For the application workload, we �rst �ll up all the data

structures to 90% load factor. We then perform operations
from a mixed workload and compute the aggregate through-
put of the data structure to execute the set of operations.

The Morton �lter supports a batch API for insertions and
queries [13]. Nonetheless, we use the one-at-a-time API for
two reasons. First, this makes an apples-to-apples compari-
son with the other �lters. Second, many applications cannot
use batching, and we want our benchmarks to re�ect the
performance that such applications would see.

7.2 In-RAM performance
Figure 4 shows the in-RAM performance of data structures.
The vector quotient �lter �lter has the highest insertion
throughput compared to other data structures. It is 2⇥ and
2.5⇥ faster than the Morton �lter and cuckoo �lter, respec-
tively. Aggregate throughput of di�erent operations are
shown in Figure 6a.

The insertion throughput of the vector quotient �lter with-
out short-circuit optimization stays consistent across di�er-
ent load factors. With the short-circuit optimization, the
insertion throughput is ⇡ 1.25⇥ higher until ⇡ 75% load

9

Quotient filter plus minimum of 2 choice retains good
performance even when almost full.

[Pandey, Conway, Durie, Bender, Farach-Colton, Johnson 21]

Empirical Performance of a Vector Quotient Filter

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

Vector �otient Filters: Overcoming the Time/Space Trade-O� in Filter Design

(a) Insertion (Higher is better.) (b) Deletion throughput (Higher is better.)

(c) Successful lookup (Higher is better.) (d) Random lookup (Higher is better.)

Figure 4: Insertion, deletion, and lookup performance of di�erent �lters in RAM. VQF (no sc) means that no
shortcuts during insertion. VQF (insert sc) means shortcut during insertion. Note that in Figure 4(d), the line for
VQF (no sc) is hidden behind the line for VQF (insert sc), as their performance was almost identical. VQF(insert
sc) and VQF (no sc) only show throughput up to 90% load factor because we can only �ll the vector quotient �lter
to 93% capacity.

In order to isolate the performance di�erences between
the data structures, we do not count the time required to
generate the random inputs to the �lters.

Application workload. We also measure the perfor-
mance of the data structures on workloads consisting of
equal portions of insertions, removals, and lookups when
the data structure is maintained at a high load factor (90%).
This workload is characterized as a write heavy (WH) work-
load [23] because it involves inserting and removing items
from the data structure when it is almost full. This type of
workload is often seen in real-world applications and the
performance of the data structure at a high load factor and
under a write heavy workload is critical for applications to
scale.
For the application workload, we �rst �ll up all the data

structures to 90% load factor. We then perform operations
from a mixed workload and compute the aggregate through-
put of the data structure to execute the set of operations.

The Morton �lter supports a batch API for insertions and
queries [13]. Nonetheless, we use the one-at-a-time API for
two reasons. First, this makes an apples-to-apples compari-
son with the other �lters. Second, many applications cannot
use batching, and we want our benchmarks to re�ect the
performance that such applications would see.

7.2 In-RAM performance
Figure 4 shows the in-RAM performance of data structures.
The vector quotient �lter �lter has the highest insertion
throughput compared to other data structures. It is 2⇥ and
2.5⇥ faster than the Morton �lter and cuckoo �lter, respec-
tively. Aggregate throughput of di�erent operations are
shown in Figure 6a.

The insertion throughput of the vector quotient �lter with-
out short-circuit optimization stays consistent across di�er-
ent load factors. With the short-circuit optimization, the
insertion throughput is ⇡ 1.25⇥ higher until ⇡ 75% load

9

Cuckoo still kicks butt on queries.

[Pandey, Conway, Durie, Bender, Farach-Colton, Johnson 21]

Summery Slide

Summery Slide

Applications should demand a richer
set of operations from their filter.

It’s time to change your filter.
Fingerprinting +

quotienting + collision
resolution is unifying theme

in theory and practice.

