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Web Browsing with SSL

Public Key /
Certificate

Browser

Web Server

Key exchange:
Establish a shared
secret

Digital signature:
Server proves it was the 
one who helped pick the 
shared secret

Symmetric crypto:
main communication
bytestream
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About the First Two Stages (Public-Key Crypto)

●Public-key stages only run once per 
session, but, with many small HTTPS 
connections common in practice, their 
performance is still important.
●Balancing correctness and performance 
is also more challenging for the public-key 
algorithms.
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But the experts know how to do all this, right?

Algorithms Prime #s


HW Arches


Labor-intensive adaptation, with each combination taking significant 
expert effort.



5

We introduced Fiat Cryptography.

●An automatic generator for this kind of code,
●with correctness proofs in the Coq theorem prover.
●Adopted for small but important parts of TLS implementations in 
both Chrome and Firefox, plus a number of blockchain systems, 
etc.
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The Ivory Tower
(formal-verification 
experts live here)

The Real World
(maintainers of OpenSSL, 
etc., live here)
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Outline

●Catching up: formal verification in the 21st century
●More specific project motivation
●Classic Fiat Cryptography
●Towards correct-by-construction cryptographic appliances



8

Catching up: formal verification in the 21st century
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Debugging: The Secret Essence of 
Programming

“By June 1949 people had begun to realize that 
it was not so easy to get programs right as at 
one time appeared.

[…] the realization came over me with full force 
that a good part of the remainder of my life was 
going to be spent in finding errors in my own 
programs.”

Maurice Wilkes, Memoirs of a Computer 
Pioneer, MIT Press, 1985, p. 145.

"EDSAC (9)". Licensed under CC BY 2.0 via Commons -
https://commons.wikimedia.org/wiki/File:EDSAC_(9).jpg#/media/File:EDSAC_(9).jp
g
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Crucial Substitutions

Debugging
exploring concrete executions

Proving
exploring symbolic arguments

Testing
describing concrete scenarios

Specifying
describing general requirements

Auditing code
algorithms in detail

Auditing specs
functionality without optimizations
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Q: Aren't These Proofs Too Boring for Mortals?

It is argued that formal verifications of programs,
no matter how obtained, will not play the same key role
in the development of computer science and software
engineering as proofs do in mathematics. Furthermore
the absence of continuity, the inevitability of change,
and the complexity of specification of significantly
many real programs make the formal verification
process difficult to justify and manage.

– De Millo, Lipton, and Perlis,
“Social Processes and Proofs of
Theorems and Programs,” CACM, 1979



12

The Proof Workflow of the Future

Proof
Engineer

Proof

Theorem

Libraries Galore

Version Control

Proof
Engineer

Proof

Theorem

Continuous
Integration

Proof
Checking

Code
Review
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Proof Assistant

noun: a software package essentially providing an
integrated development environment (IDE)
for stating and proving mathematical theorems

where writing proofs takes human effort
but checking proofs is automatic
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The Most Popular Proof Assistants

Isabelle/HOL One well-known application:

Verified microkernel OS

Coq
One well-known application:
CompCert

Verified C compiler
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Why Should the [Machine|Human]
Trust the [Human|Machine]?

Tactic Engine

Human User tactic

proof
state proof

term

Untrusted

Trusted
proof

checker

new tactic libraries
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Demo

Some simple proofs in Coq
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Q: Isn't It (About) As Hard to Get Specs Right?

Progress?
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A: Focus Spec-Writing on Systems Infrastructure
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An Approximate Truth About Software

Spec
+

Optimizations
=

Implementation
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Q: Aren't Those Specs Still Hard to Get Right?

Compiler

Source Language 
Semantics

Machine Language 
Semantics

Application

App Spec

Processor

VHDL Semantics

Self-
Contained
Verified 
Unit

No longer trusted!
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Old vs. New

Old
System-integration tests
and unit tests,
since combined state space grows
exponentially as we compose pieces

New
System-integration theorems imply
proper functioning of all
components.

Careful code review of all components,
since a corner-case bug in any of them
can wreck the whole system

Careful code review only of
externally facing specs
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Q: Aren't the Proofs Huge and Unwieldy?
Well, aren't machine-code programs huge, too?

Compiler

Compiler

Libraries

Libraries

Custom
Prover

Tactic
Engine

Lemma 
Libraries

Lemma 
Libraries
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Motivation: correct-by-construction crypto
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Correct-by-Construction Cryptography

Abstract
security
property

“Knowledge of the secret key is needed 
to produce a signature in polynomial 
time.”

Mathematical
algorithm y2 = x3 – x + 1

protocol
verification

Low-level 
code

implementation
synthesisspecialized assembly code
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Correct-by-Construction Cryptography
Mathematical
algorithm point = (x, y)

High-level 
modular 
arithmetic

x = x0, x1, …, xn
(mathematical integers)

classic verification
of functional programs

Low-level 
code

compile-time code
specialization

compiler verificationspecialized low-level code
(assumes fixed set of integer sizes)

classic verification
of functional programs

Optimized 
point format point = (x, y, z, t)
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Generated Code
Squaring a number (64-bit)
λ '(x7, x8, x6, x4, x2)%core,
uint64_t x9 = x2 * 0x2;
uint64_t x10 = x4 * 0x2;
uint64_t x11 = x6 * 0x2 * 0x13;
uint64_t x12 = x7 * 0x13;
uint64_t x13 = x12 * 0x2;
uint128_t x14 = (uint128_t) x2 * x2 + (uint128_t) x13 * x4 + (uint128_t) x11 * x8;
uint128_t x15 = (uint128_t) x9 * x4 + (uint128_t) x13 * x6 + (uint128_t) x8 * (x8 * 0x13);
uint128_t x16 = (uint128_t) x9 * x6 + (uint128_t) x4 * x4 + (uint128_t) x13 * x8;
uint128_t x17 = (uint128_t) x9 * x8 + (uint128_t) x10 * x6 + (uint128_t) x7 * x12;
uint128_t x18 = (uint128_t) x9 * x7 + (uint128_t) x10 * x8 + (uint128_t) x6 * x6;
uint64_t x19 = (uint64_t) (x14 >> 0x33);
uint64_t x20 = (uint64_t) x14 & 0x7ffffffffffff;
uint128_t x21 = x19 + x15;
uint64_t x22 = (uint64_t) (x21 >> 0x33);
uint64_t x23 = (uint64_t) x21 & 0x7ffffffffffff;
uint128_t x24 = x22 + x16;
uint64_t x25 = (uint64_t) (x24 >> 0x33);
uint64_t x26 = (uint64_t) x24 & 0x7ffffffffffff;
uint128_t x27 = x25 + x17;
uint64_t x28 = (uint64_t) (x27 >> 0x33);
uint64_t x29 = (uint64_t) x27 & 0x7ffffffffffff;
uint128_t x30 = x28 + x18;
uint64_t x31 = (uint64_t) (x30 >> 0x33);
uint64_t x32 = (uint64_t) x30 & 0x7ffffffffffff;
uint64_t x33 = x20 + 0x13 * x31;
uint64_t x34 = x33 >> 0x33;
uint64_t x35 = x33 & 0x7ffffffffffff;
uint64_t x36 = x34 + x23;
uint64_t x37 = x36 >> 0x33;
uint64_t x38 = x36 & 0x7ffffffffffff;
return (Return x32, Return x29, x37 + x26, Return x38, Return x35))

Squaring a number (32-bit)
λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core,
uint64_t x19 = (uint64_t) x2 * x2;
uint64_t x20 = (uint64_t) (0x2 * x2) * x4;
uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6);
uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8);
uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10;
uint64_t x24 = 0x2 * ((uint64_t) x6 * x8 + (uint64_t) x4 * x10 + (uint64_t) x2 * x12);
uint64_t x25 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x6 * x10 + (uint64_t) x2 * x14 + (uint64_t) (0x2 * x4) * x12);
uint64_t x26 = 0x2 * ((uint64_t) x8 * x10 + (uint64_t) x6 * x12 + (uint64_t) x4 * x14 + (uint64_t) x2 * x16);
uint64_t x27 = (uint64_t) x10 * x10 + 0x2 * ((uint64_t) x6 * x14 + (uint64_t) x2 * x18 + 0x2 * ((uint64_t) x4 * x16 + (uint64_t) x8 * x12));
uint64_t x28 = 0x2 * ((uint64_t) x10 * x12 + (uint64_t) x8 * x14 + (uint64_t) x6 * x16 + (uint64_t) x4 * x18 + (uint64_t) x2 * x17);
uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x8 * x16 + (uint64_t) x4 * x17));
uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x6 * x17);
uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17));
uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17);
uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17);
uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17);
uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17;
uint64_t x36 = (uint64_t) (0x2 * x18) * x17;
uint64_t x37 = (uint64_t) (0x2 * x17) * x17;
uint64_t x38 = x27 + x37 << 0x4;
uint64_t x39 = x38 + x37 << 0x1;
uint64_t x40 = x39 + x37;
uint64_t x41 = x26 + x36 << 0x4;
uint64_t x42 = x41 + x36 << 0x1;
uint64_t x43 = x42 + x36;
uint64_t x44 = x25 + x35 << 0x4;
uint64_t x45 = x44 + x35 << 0x1;
uint64_t x46 = x45 + x35;
uint64_t x47 = x24 + x34 << 0x4;
uint64_t x48 = x47 + x34 << 0x1;
uint64_t x49 = x48 + x34;
uint64_t x50 = x23 + x33 << 0x4;
uint64_t x51 = x50 + x33 << 0x1;
uint64_t x52 = x51 + x33;
uint64_t x53 = x22 + x32 << 0x4;
uint64_t x54 = x53 + x32 << 0x1;
uint64_t x55 = x54 + x32;
uint64_t x56 = x21 + x31 << 0x4;
uint64_t x57 = x56 + x31 << 0x1;
uint64_t x58 = x57 + x31;
uint64_t x59 = x20 + x30 << 0x4;
uint64_t x60 = x59 + x30 << 0x1;
uint64_t x61 = x60 + x30;
uint64_t x62 = x19 + x29 << 0x4;
uint64_t x63 = x62 + x29 << 0x1;
uint64_t x64 = x63 + x29;
uint64_t x65 = x64 >> 0x1a;
uint32_t x66 = (uint32_t) x64 & 0x3ffffff;
uint64_t x67 = x65 + x61;
uint64_t x68 = x67 >> 0x19;
uint32_t x69 = (uint32_t) x67 & 0x1ffffff;
uint64_t x70 = x68 + x58;
uint64_t x71 = x70 >> 0x1a;
uint32_t x72 = (uint32_t) x70 & 0x3ffffff;
uint64_t x73 = x71 + x55;
uint64_t x74 = x73 >> 0x19;
uint32_t x75 = (uint32_t) x73 & 0x1ffffff;
uint64_t x76 = x74 + x52;
uint64_t x77 = x76 >> 0x1a;
uint32_t x78 = (uint32_t) x76 & 0x3ffffff;
uint64_t x79 = x77 + x49;
uint64_t x80 = x79 >> 0x19;
uint32_t x81 = (uint32_t) x79 & 0x1ffffff;
uint64_t x82 = x80 + x46;
uint32_t x83 = (uint32_t) (x82 >> 0x1a);
uint32_t x84 = (uint32_t) x82 & 0x3ffffff;
uint64_t x85 = x83 + x43;
uint32_t x86 = (uint32_t) (x85 >> 0x19);
uint32_t x87 = (uint32_t) x85 & 0x1ffffff;
uint64_t x88 = x86 + x40;
uint32_t x89 = (uint32_t) (x88 >> 0x1a);
uint32_t x90 = (uint32_t) x88 & 0x3ffffff;
uint64_t x91 = x89 + x28;
uint32_t x92 = (uint32_t) (x91 >> 0x19);
uint32_t x93 = (uint32_t) x91 & 0x1ffffff;
uint64_t x94 = x66 + (uint64_t) 0x13 * x92;
uint32_t x95 = (uint32_t) (x94 >> 0x1a);
uint32_t x96 = (uint32_t) x94 & 0x3ffffff;
uint32_t x97 = x95 + x69;
uint32_t x98 = x97 >> 0x19;
uint32_t x99 = x97 & 0x1ffffff;
return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))
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Surprising (?) Fact About Modular Arithmetic

Different prime moduli have dramatically different efficiency with 
best code on commodity processors.

2255 – 19 is a popular choice for relatively easy implementation.
General pattern: 2k – c, for c << 2k.  (Called pseudo-Mersenne.)
Example of a fast operation: modular reduction

t = x + 2ky (mod 2k – c)
= x + (2k – c + c)y (mod 2k – c)
= x + (2k – c)y + cy (mod 2k – c)
= x + cy (mod 2k – c)

too big to fit below the modulus!
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Representing Numbers mod 2255 - 19
t
= t0 t1 t2 t3 t4 t5 t6 t7
= (t0 + 264 t1 + …) + 2256 (t4 + 264 t5 + ...)

result of multiplying two numbers in the prime field, so 510 bits wide
each “digit” fits in 64-bit register

darn, that's 2256, not 2255, so we can't use that reduction trick!

However.... 51 × 10 = 510.
t = (t0 + 251 t1 + …) + 2255 (t5 + 251 t6 + ...)

champion rep. on 64-bit processors
(note: not using full bitwidth!)Also.... 25.5 × 2 = 51.

t = s0 + 225.5 s1 + 22 × 25.5 s2 + 23 × 25.5 s3 + …
champion rep. on 32-bit processors
(note: nonuniform bitwidths!)t = s0 + 226 s1 + 251 s2 + 277 s3 + ...
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Demo

Invoking Fiat Cryptography
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The Fiat Cryptography approach
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The Basic Idea

Our Library

Choice of base-system representation

Fast C code

proof

Choice of base-system representation

Generic Operations
(functional programs)

Specialized Operations
(flatter functional programs)

partial evaluation

Low-Level Code

bounds inference
other compiler opts.
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Example: Multiplication (for modulus 2127 - 1)

s = s0 + 243 s1 + 285 s2
t = t0 + 243 t1 + 285 t2

s  t = 1 s0t0 + 243 s0t1 + 285 s0t2
+ 243 s1t0 + 286 s1t1 + 2128 s1t2

+ 285 
s2t0 + 2128 s2t1 + 2170 s2t2

s t = u = u0 u1 u2 u3 u4

u0 = s0t0
u1 = s0t1 + s1t0

u2 = s0t2 + 2s1t1 + s2t0
u3 = 2s1t2 + 2s2t1

u4 = s2t2u = u0 + 243 u1 + 285 u2 + 2127 (u3 + 243 u4)
= (u0 + u3) + 243 (u1 + u4) + 285 u2
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Time for Some Partial Evaluation

Multiply

Digit
Bitwidths s Digits t Digits

s × t Digits

Multiply

Digit
Bitwidths s Digits t Digits

s × t Digits

Specialize
Multiply

s Digits t Digits

s × t Digits

Reduce

In Coq:
just partially
applying a
curried function

In Coq:
just calling
a standard
term-reduction tactic
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An Example
Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i).

Example base_25_5_mul (f g:tuple Z 10) :
{ fg : tuple Z 10 |
(eval w fg) mod (2^255-19)
= (eval w f * eval w g) mod (2^255-19) }.

(f0*g9+f1*g8+f2*g7+f3*g6+f4*g5+f5*g4+f6*g3+f7*g2+f8*g1+f9*g0,
f0*g8+2*f1*g7+f2*g6+2*f3*g5+f4*g4+2*f5*g3+f6*g2+2*f7*g1+f8*g0+38*f9*g9,
f0*g7+f1*g6+f2*g5+f3*g4+f4*g3+f5*g2+f6*g1+f7*g0+19*f8*g9+19*f9*g8,
f0*g6+2*f1*g5+f2*g4+2*f3*g3+f4*g2+2*f5*g1+f6*g0+38*f7*g9+19*f8*g8+38*f9*g7,
f0*g5+f1*g4+f2*g3+f3*g2+f4*g1+f5*g0+19*f6*g9+19*f7*g8+19*f8*g7+19*f9*g6,
f0*g4+2*f1*g3+f2*g2+2*f3*g1+f4*g0+38*f5*g9+19*f6*g8+38*f7*g7+19*f8*g6+38*f9*g5,
f0*g3+f1*g2+f2*g1+f3*g0+19*f4*g9+19*f5*g8+19*f6*g7+19*f7*g6+19*f8*g5+19*f9*g4,
f0*g2+2*f1*g1+f2*g0+38*f3*g9+19*f4*g8+38*f5*g7+19*f6*g6+38*f7*g5+19*f8*g4+38*f9*g3,
f0*g1+f1*g0+19*f2*g9+19*f3*g8+19*f4*g7+19*f5*g6+19*f6*g5+19*f7*g4+19*f8*g3+19*f9*g2,
f0*g0+38*f1*g9+19*f2*g8+38*f3*g7+19*f4*g6+38*f5*g5+19*f6*g4+38*f7*g3+19*f8*g2+38*f9*g1)
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Compiling to Low-Level Code
1 × (1 × 252 + (1 × x + 0)) + (1 × (1 × (-y) + 0) + 0)

reify to syntax tree

constant-fold

(252 + x) - y
flatten

let c = 252 + x in
let d = c – y in
d

infer bounds

Assume: 0 ≤ x, y ≤ 251 + 248

Deduce: 252 ≤ c ≤ 252 + 251 + 248

Deduce: 251 – 248 ≤ d ≤ 252 + 251 + 248

uint64_t c = 252 + 
x;
uint64_t d = c – y;
t  d
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Implementation and Experiments

●~38 kloc in full library (including significant parts that belong in 
stdlib)
●Very little code needed to instantiate to new prime moduli.
●In fact, we wrote a Python script (under 3000 lines) to generate 
parameters automatically from prime numbers, written 
suggestively, e.g. 2256 - 2224 + 2192 + 296 – 1.
●This script is outside the TCB, since any successful compilation is 
guaranteed to implement correct arithmetic.
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Q: Where do we get a lot of reasonable moduli?

A: Scrape all prime numbers appearing in a popular mailing list.

We used the elliptic curves list at moderncrypto.org.
We found about 80 primes.

Only a few turned out to be terrible ideas posted by newbies.
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Many-Primes Experiment
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P256 Mixed Addition
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Towards correct-by-construction cryptographic appliances



4

The Verified IoT Lightbulb!

FPGA running our formally 
verified processor and software 
stack

Ethernet card

Power strip & 
lightbulb
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The Verified IoT Lightbulb!

FPGA running our formally 
verified processor and software 
stack

Ethernet card

Power strip & 
lightbulb

Scope of formal proof:
essentially all code
(HW & SW) loaded on
this FPGA
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Specification?

Gory digital details of HW 
& SW

IO pins
Input Output

Consider all traces the system could generate:
00100, 11000, 00100, ...

Recording pin values each cycle

Input pins: the environment may choose any 
values each cycle.

Output pins: we as spec-writers may mandate 
what they are allowed to be!

“Output pin controlling lightbulb is 
only on if the last valid Ethernet 

packet said so.”
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Key Layers of End-to-End Proof

ISA Family Semantics

Verified Hardware

RTL Semantics

Verified Compiler

Programming Language Semantics

Controller SW

Controller Spec (Trace Predicate)
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Disappearing Specs

ISA Family Semantics

Verified Hardware

RTL Semantics

Verified Compiler

Programming Language Semantics

Controller SW

Controller Spec (Trace Predicate)

System as a Proved Black Box

Must get this spec right.

Must get this one right, too.

Everything this box hides is no 
longer trusted!
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Expanding Scope
Abstract
security
property

“Knowledge of the secret key is 
needed to produce a signature in 
polynomial time.”

Mathematical
algorithm y2 = x3 – x + 1

Low-level 
code

specialized assembly code

High-level 
modular 
arithmetic

x = x0, x1, …, xn

Protocol verification,
perhaps following past work
by Appel & others,
using our new higher-level
notation for protocol
programming

Synthesizing C code for more
of a crypto library (beyond
straightline code) with
Rupicola, a proof-generating
compiler
Genetic search for fast
assembly code (collaboration
with Prof. Yuval Yarom et al.),
plus formally verified
program-equivalence checker

Connect to verified HW
& systems software
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https://github.com/mit-plv/fiat-
cryptohttps://github.com/mit-plv/bedrock2

https://github.com/mit-plv/fiat-crypto
https://github.com/mit-plv/bedrock2
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