
1

Correct-by-Construction
Cryptography
Without Performance Compromises

Adam Chlipala, MIT CSAIL
NUS Computer Science Research Week
January 2022

Joint work with:
Joonwon Choi, Andres Erbsen, Jason Gross, Jade Philipoom, Robert
Sloan, Clark Wood

2

Web Browsing with SSL

Public Key /
Certificate

Browser

Web Server

Key exchange:
Establish a shared
secret

Digital signature:
Server proves it was the
one who helped pick the
shared secret

Symmetric crypto:
main communication
bytestream

3

About the First Two Stages (Public-Key Crypto)

●Public-key stages only run once per
session, but, with many small HTTPS
connections common in practice, their
performance is still important.
●Balancing correctness and performance
is also more challenging for the public-key
algorithms.

4

But the experts know how to do all this, right?

Algorithms Prime #s


HW Arches


Labor-intensive adaptation, with each combination taking significant
expert effort.

5

We introduced Fiat Cryptography.

●An automatic generator for this kind of code,
●with correctness proofs in the Coq theorem prover.
●Adopted for small but important parts of TLS implementations in
both Chrome and Firefox, plus a number of blockchain systems,
etc.

6

The Ivory Tower
(formal-verification
experts live here)

The Real World
(maintainers of OpenSSL,
etc., live here)

7

Outline

●Catching up: formal verification in the 21st century
●More specific project motivation
●Classic Fiat Cryptography
●Towards correct-by-construction cryptographic appliances

8

Catching up: formal verification in the 21st century

9

Debugging: The Secret Essence of
Programming

“By June 1949 people had begun to realize that
it was not so easy to get programs right as at
one time appeared.

[…] the realization came over me with full force
that a good part of the remainder of my life was
going to be spent in finding errors in my own
programs.”

Maurice Wilkes, Memoirs of a Computer
Pioneer, MIT Press, 1985, p. 145.

"EDSAC (9)". Licensed under CC BY 2.0 via Commons -
https://commons.wikimedia.org/wiki/File:EDSAC_(9).jpg#/media/File:EDSAC_(9).jp
g

10

Crucial Substitutions

Debugging
exploring concrete executions

Proving
exploring symbolic arguments

Testing
describing concrete scenarios

Specifying
describing general requirements

Auditing code
algorithms in detail

Auditing specs
functionality without optimizations

11

Q: Aren't These Proofs Too Boring for Mortals?

It is argued that formal verifications of programs,
no matter how obtained, will not play the same key role
in the development of computer science and software
engineering as proofs do in mathematics. Furthermore
the absence of continuity, the inevitability of change,
and the complexity of specification of significantly
many real programs make the formal verification
process difficult to justify and manage.

– De Millo, Lipton, and Perlis,
“Social Processes and Proofs of
Theorems and Programs,” CACM, 1979

12

The Proof Workflow of the Future

Proof
Engineer

Proof

Theorem

Libraries Galore

Version Control

Proof
Engineer

Proof

Theorem

Continuous
Integration

Proof
Checking

Code
Review

13

Proof Assistant

noun: a software package essentially providing an
integrated development environment (IDE)
for stating and proving mathematical theorems

where writing proofs takes human effort
but checking proofs is automatic

14

The Most Popular Proof Assistants

Isabelle/HOL One well-known application:

Verified microkernel OS

Coq
One well-known application:
CompCert

Verified C compiler

15

Why Should the [Machine|Human]
Trust the [Human|Machine]?

Tactic Engine

Human User tactic

proof
state proof

term

Untrusted

Trusted
proof

checker

new tactic libraries

16

Demo

Some simple proofs in Coq

17

Q: Isn't It (About) As Hard to Get Specs Right?

Progress?

18

A: Focus Spec-Writing on Systems Infrastructure

19

An Approximate Truth About Software

Spec
+

Optimizations
=

Implementation

20

Q: Aren't Those Specs Still Hard to Get Right?

Compiler

Source Language
Semantics

Machine Language
Semantics

Application

App Spec

Processor

VHDL Semantics

Self-
Contained
Verified
Unit

No longer trusted!

21

Old vs. New

Old
System-integration tests
and unit tests,
since combined state space grows
exponentially as we compose pieces

New
System-integration theorems imply
proper functioning of all
components.

Careful code review of all components,
since a corner-case bug in any of them
can wreck the whole system

Careful code review only of
externally facing specs

22

Q: Aren't the Proofs Huge and Unwieldy?
Well, aren't machine-code programs huge, too?

Compiler

Compiler

Libraries

Libraries

Custom
Prover

Tactic
Engine

Lemma
Libraries

Lemma
Libraries

23

Motivation: correct-by-construction crypto

24

Correct-by-Construction Cryptography

Abstract
security
property

“Knowledge of the secret key is needed
to produce a signature in polynomial
time.”

Mathematical
algorithm y2 = x3 – x + 1

protocol
verification

Low-level
code

implementation
synthesisspecialized assembly code

25

Correct-by-Construction Cryptography
Mathematical
algorithm point = (x, y)

High-level
modular
arithmetic

x = x0, x1, …, xn
(mathematical integers)

classic verification
of functional programs

Low-level
code

compile-time code
specialization

compiler verificationspecialized low-level code
(assumes fixed set of integer sizes)

classic verification
of functional programs

Optimized
point format point = (x, y, z, t)

26

Generated Code
Squaring a number (64-bit)
λ '(x7, x8, x6, x4, x2)%core,
uint64_t x9 = x2 * 0x2;
uint64_t x10 = x4 * 0x2;
uint64_t x11 = x6 * 0x2 * 0x13;
uint64_t x12 = x7 * 0x13;
uint64_t x13 = x12 * 0x2;
uint128_t x14 = (uint128_t) x2 * x2 + (uint128_t) x13 * x4 + (uint128_t) x11 * x8;
uint128_t x15 = (uint128_t) x9 * x4 + (uint128_t) x13 * x6 + (uint128_t) x8 * (x8 * 0x13);
uint128_t x16 = (uint128_t) x9 * x6 + (uint128_t) x4 * x4 + (uint128_t) x13 * x8;
uint128_t x17 = (uint128_t) x9 * x8 + (uint128_t) x10 * x6 + (uint128_t) x7 * x12;
uint128_t x18 = (uint128_t) x9 * x7 + (uint128_t) x10 * x8 + (uint128_t) x6 * x6;
uint64_t x19 = (uint64_t) (x14 >> 0x33);
uint64_t x20 = (uint64_t) x14 & 0x7ffffffffffff;
uint128_t x21 = x19 + x15;
uint64_t x22 = (uint64_t) (x21 >> 0x33);
uint64_t x23 = (uint64_t) x21 & 0x7ffffffffffff;
uint128_t x24 = x22 + x16;
uint64_t x25 = (uint64_t) (x24 >> 0x33);
uint64_t x26 = (uint64_t) x24 & 0x7ffffffffffff;
uint128_t x27 = x25 + x17;
uint64_t x28 = (uint64_t) (x27 >> 0x33);
uint64_t x29 = (uint64_t) x27 & 0x7ffffffffffff;
uint128_t x30 = x28 + x18;
uint64_t x31 = (uint64_t) (x30 >> 0x33);
uint64_t x32 = (uint64_t) x30 & 0x7ffffffffffff;
uint64_t x33 = x20 + 0x13 * x31;
uint64_t x34 = x33 >> 0x33;
uint64_t x35 = x33 & 0x7ffffffffffff;
uint64_t x36 = x34 + x23;
uint64_t x37 = x36 >> 0x33;
uint64_t x38 = x36 & 0x7ffffffffffff;
return (Return x32, Return x29, x37 + x26, Return x38, Return x35))

Squaring a number (32-bit)
λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core,
uint64_t x19 = (uint64_t) x2 * x2;
uint64_t x20 = (uint64_t) (0x2 * x2) * x4;
uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6);
uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8);
uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10;
uint64_t x24 = 0x2 * ((uint64_t) x6 * x8 + (uint64_t) x4 * x10 + (uint64_t) x2 * x12);
uint64_t x25 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x6 * x10 + (uint64_t) x2 * x14 + (uint64_t) (0x2 * x4) * x12);
uint64_t x26 = 0x2 * ((uint64_t) x8 * x10 + (uint64_t) x6 * x12 + (uint64_t) x4 * x14 + (uint64_t) x2 * x16);
uint64_t x27 = (uint64_t) x10 * x10 + 0x2 * ((uint64_t) x6 * x14 + (uint64_t) x2 * x18 + 0x2 * ((uint64_t) x4 * x16 + (uint64_t) x8 * x12));
uint64_t x28 = 0x2 * ((uint64_t) x10 * x12 + (uint64_t) x8 * x14 + (uint64_t) x6 * x16 + (uint64_t) x4 * x18 + (uint64_t) x2 * x17);
uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x8 * x16 + (uint64_t) x4 * x17));
uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x6 * x17);
uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17));
uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17);
uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17);
uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17);
uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17;
uint64_t x36 = (uint64_t) (0x2 * x18) * x17;
uint64_t x37 = (uint64_t) (0x2 * x17) * x17;
uint64_t x38 = x27 + x37 << 0x4;
uint64_t x39 = x38 + x37 << 0x1;
uint64_t x40 = x39 + x37;
uint64_t x41 = x26 + x36 << 0x4;
uint64_t x42 = x41 + x36 << 0x1;
uint64_t x43 = x42 + x36;
uint64_t x44 = x25 + x35 << 0x4;
uint64_t x45 = x44 + x35 << 0x1;
uint64_t x46 = x45 + x35;
uint64_t x47 = x24 + x34 << 0x4;
uint64_t x48 = x47 + x34 << 0x1;
uint64_t x49 = x48 + x34;
uint64_t x50 = x23 + x33 << 0x4;
uint64_t x51 = x50 + x33 << 0x1;
uint64_t x52 = x51 + x33;
uint64_t x53 = x22 + x32 << 0x4;
uint64_t x54 = x53 + x32 << 0x1;
uint64_t x55 = x54 + x32;
uint64_t x56 = x21 + x31 << 0x4;
uint64_t x57 = x56 + x31 << 0x1;
uint64_t x58 = x57 + x31;
uint64_t x59 = x20 + x30 << 0x4;
uint64_t x60 = x59 + x30 << 0x1;
uint64_t x61 = x60 + x30;
uint64_t x62 = x19 + x29 << 0x4;
uint64_t x63 = x62 + x29 << 0x1;
uint64_t x64 = x63 + x29;
uint64_t x65 = x64 >> 0x1a;
uint32_t x66 = (uint32_t) x64 & 0x3ffffff;
uint64_t x67 = x65 + x61;
uint64_t x68 = x67 >> 0x19;
uint32_t x69 = (uint32_t) x67 & 0x1ffffff;
uint64_t x70 = x68 + x58;
uint64_t x71 = x70 >> 0x1a;
uint32_t x72 = (uint32_t) x70 & 0x3ffffff;
uint64_t x73 = x71 + x55;
uint64_t x74 = x73 >> 0x19;
uint32_t x75 = (uint32_t) x73 & 0x1ffffff;
uint64_t x76 = x74 + x52;
uint64_t x77 = x76 >> 0x1a;
uint32_t x78 = (uint32_t) x76 & 0x3ffffff;
uint64_t x79 = x77 + x49;
uint64_t x80 = x79 >> 0x19;
uint32_t x81 = (uint32_t) x79 & 0x1ffffff;
uint64_t x82 = x80 + x46;
uint32_t x83 = (uint32_t) (x82 >> 0x1a);
uint32_t x84 = (uint32_t) x82 & 0x3ffffff;
uint64_t x85 = x83 + x43;
uint32_t x86 = (uint32_t) (x85 >> 0x19);
uint32_t x87 = (uint32_t) x85 & 0x1ffffff;
uint64_t x88 = x86 + x40;
uint32_t x89 = (uint32_t) (x88 >> 0x1a);
uint32_t x90 = (uint32_t) x88 & 0x3ffffff;
uint64_t x91 = x89 + x28;
uint32_t x92 = (uint32_t) (x91 >> 0x19);
uint32_t x93 = (uint32_t) x91 & 0x1ffffff;
uint64_t x94 = x66 + (uint64_t) 0x13 * x92;
uint32_t x95 = (uint32_t) (x94 >> 0x1a);
uint32_t x96 = (uint32_t) x94 & 0x3ffffff;
uint32_t x97 = x95 + x69;
uint32_t x98 = x97 >> 0x19;
uint32_t x99 = x97 & 0x1ffffff;
return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))

27

Surprising (?) Fact About Modular Arithmetic

Different prime moduli have dramatically different efficiency with
best code on commodity processors.

2255 – 19 is a popular choice for relatively easy implementation.
General pattern: 2k – c, for c << 2k. (Called pseudo-Mersenne.)
Example of a fast operation: modular reduction

t = x + 2ky (mod 2k – c)
= x + (2k – c + c)y (mod 2k – c)
= x + (2k – c)y + cy (mod 2k – c)
= x + cy (mod 2k – c)

too big to fit below the modulus!

28

Representing Numbers mod 2255 - 19
t
= t0 t1 t2 t3 t4 t5 t6 t7
= (t0 + 264 t1 + …) + 2256 (t4 + 264 t5 + ...)

result of multiplying two numbers in the prime field, so 510 bits wide
each “digit” fits in 64-bit register

darn, that's 2256, not 2255, so we can't use that reduction trick!

However.... 51 × 10 = 510.
t = (t0 + 251 t1 + …) + 2255 (t5 + 251 t6 + ...)

champion rep. on 64-bit processors
(note: not using full bitwidth!)Also.... 25.5 × 2 = 51.

t = s0 + 225.5 s1 + 22 × 25.5 s2 + 23 × 25.5 s3 + …
champion rep. on 32-bit processors
(note: nonuniform bitwidths!)t = s0 + 226 s1 + 251 s2 + 277 s3 + ...

29

Demo

Invoking Fiat Cryptography

30

The Fiat Cryptography approach

31

The Basic Idea

Our Library

Choice of base-system representation

Fast C code

proof

Choice of base-system representation

Generic Operations
(functional programs)

Specialized Operations
(flatter functional programs)

partial evaluation

Low-Level Code

bounds inference
other compiler opts.

32

Example: Multiplication (for modulus 2127 - 1)

s = s0 + 243 s1 + 285 s2
t = t0 + 243 t1 + 285 t2

s  t = 1 s0t0 + 243 s0t1 + 285 s0t2
+ 243 s1t0 + 286 s1t1 + 2128 s1t2

+ 285 
s2t0 + 2128 s2t1 + 2170 s2t2

s t = u = u0 u1 u2 u3 u4

u0 = s0t0
u1 = s0t1 + s1t0

u2 = s0t2 + 2s1t1 + s2t0
u3 = 2s1t2 + 2s2t1

u4 = s2t2u = u0 + 243 u1 + 285 u2 + 2127 (u3 + 243 u4)
= (u0 + u3) + 243 (u1 + u4) + 285 u2

33

Time for Some Partial Evaluation

Multiply

Digit
Bitwidths s Digits t Digits

s × t Digits

Multiply

Digit
Bitwidths s Digits t Digits

s × t Digits

Specialize
Multiply

s Digits t Digits

s × t Digits

Reduce

In Coq:
just partially
applying a
curried function

In Coq:
just calling
a standard
term-reduction tactic

34

An Example
Definition w (i:nat) : Z := 2^Qceiling((25+1/2)*i).

Example base_25_5_mul (f g:tuple Z 10) :
{ fg : tuple Z 10 |
(eval w fg) mod (2^255-19)
= (eval w f * eval w g) mod (2^255-19) }.

(f0*g9+f1*g8+f2*g7+f3*g6+f4*g5+f5*g4+f6*g3+f7*g2+f8*g1+f9*g0,
f0*g8+2*f1*g7+f2*g6+2*f3*g5+f4*g4+2*f5*g3+f6*g2+2*f7*g1+f8*g0+38*f9*g9,
f0*g7+f1*g6+f2*g5+f3*g4+f4*g3+f5*g2+f6*g1+f7*g0+19*f8*g9+19*f9*g8,
f0*g6+2*f1*g5+f2*g4+2*f3*g3+f4*g2+2*f5*g1+f6*g0+38*f7*g9+19*f8*g8+38*f9*g7,
f0*g5+f1*g4+f2*g3+f3*g2+f4*g1+f5*g0+19*f6*g9+19*f7*g8+19*f8*g7+19*f9*g6,
f0*g4+2*f1*g3+f2*g2+2*f3*g1+f4*g0+38*f5*g9+19*f6*g8+38*f7*g7+19*f8*g6+38*f9*g5,
f0*g3+f1*g2+f2*g1+f3*g0+19*f4*g9+19*f5*g8+19*f6*g7+19*f7*g6+19*f8*g5+19*f9*g4,
f0*g2+2*f1*g1+f2*g0+38*f3*g9+19*f4*g8+38*f5*g7+19*f6*g6+38*f7*g5+19*f8*g4+38*f9*g3,
f0*g1+f1*g0+19*f2*g9+19*f3*g8+19*f4*g7+19*f5*g6+19*f6*g5+19*f7*g4+19*f8*g3+19*f9*g2,
f0*g0+38*f1*g9+19*f2*g8+38*f3*g7+19*f4*g6+38*f5*g5+19*f6*g4+38*f7*g3+19*f8*g2+38*f9*g1)

35

Compiling to Low-Level Code
1 × (1 × 252 + (1 × x + 0)) + (1 × (1 × (-y) + 0) + 0)

reify to syntax tree

constant-fold

(252 + x) - y
flatten

let c = 252 + x in
let d = c – y in
d

infer bounds

Assume: 0 ≤ x, y ≤ 251 + 248

Deduce: 252 ≤ c ≤ 252 + 251 + 248

Deduce: 251 – 248 ≤ d ≤ 252 + 251 + 248

uint64_t c = 252 +
x;
uint64_t d = c – y;
t d

36

Implementation and Experiments

●~38 kloc in full library (including significant parts that belong in
stdlib)
●Very little code needed to instantiate to new prime moduli.
●In fact, we wrote a Python script (under 3000 lines) to generate
parameters automatically from prime numbers, written
suggestively, e.g. 2256 - 2224 + 2192 + 296 – 1.
●This script is outside the TCB, since any successful compilation is
guaranteed to implement correct arithmetic.

37

Q: Where do we get a lot of reasonable moduli?

A: Scrape all prime numbers appearing in a popular mailing list.

We used the elliptic curves list at moderncrypto.org.
We found about 80 primes.

Only a few turned out to be terrible ideas posted by newbies.

38

Many-Primes Experiment

39

P256 Mixed Addition

40

Towards correct-by-construction cryptographic appliances

4

The Verified IoT Lightbulb!

FPGA running our formally
verified processor and software
stack

Ethernet card

Power strip &
lightbulb

4

The Verified IoT Lightbulb!

FPGA running our formally
verified processor and software
stack

Ethernet card

Power strip &
lightbulb

Scope of formal proof:
essentially all code
(HW & SW) loaded on
this FPGA

43

Specification?

Gory digital details of HW
& SW

IO pins
Input Output

Consider all traces the system could generate:
00100, 11000, 00100, ...

Recording pin values each cycle

Input pins: the environment may choose any
values each cycle.

Output pins: we as spec-writers may mandate
what they are allowed to be!

“Output pin controlling lightbulb is
only on if the last valid Ethernet

packet said so.”

44

Key Layers of End-to-End Proof

ISA Family Semantics

Verified Hardware

RTL Semantics

Verified Compiler

Programming Language Semantics

Controller SW

Controller Spec (Trace Predicate)

45

Disappearing Specs

ISA Family Semantics

Verified Hardware

RTL Semantics

Verified Compiler

Programming Language Semantics

Controller SW

Controller Spec (Trace Predicate)

System as a Proved Black Box

Must get this spec right.

Must get this one right, too.

Everything this box hides is no
longer trusted!

46

Expanding Scope
Abstract
security
property

“Knowledge of the secret key is
needed to produce a signature in
polynomial time.”

Mathematical
algorithm y2 = x3 – x + 1

Low-level
code

specialized assembly code

High-level
modular
arithmetic

x = x0, x1, …, xn

Protocol verification,
perhaps following past work
by Appel & others,
using our new higher-level
notation for protocol
programming

Synthesizing C code for more
of a crypto library (beyond
straightline code) with
Rupicola, a proof-generating
compiler
Genetic search for fast
assembly code (collaboration
with Prof. Yuval Yarom et al.),
plus formally verified
program-equivalence checker

Connect to verified HW
& systems software

47

https://github.com/mit-plv/fiat-
cryptohttps://github.com/mit-plv/bedrock2

https://github.com/mit-plv/fiat-crypto
https://github.com/mit-plv/bedrock2

	Slide Number 1
	Web Browsing with SSL
	About the First Two Stages (Public-Key Crypto)
	But the experts know how to do all this, right?
	We introduced Fiat Cryptography.
	Slide Number 6
	Outline
	Slide Number 8
	Debugging: The Secret Essence of Programming
	Crucial Substitutions
	Q: Aren't These Proofs Too Boring for Mortals?
	The Proof Workflow of the Future
	Proof Assistant
	The Most Popular Proof Assistants
	Why Should the [Machine|Human]�Trust the [Human|Machine]?
	Demo
	Q: Isn't It (About) As Hard to Get Specs Right?
	A: Focus Spec-Writing on Systems Infrastructure
	An Approximate Truth About Software
	Q: Aren't Those Specs Still Hard to Get Right?
	Old vs. New
	Q: Aren't the Proofs Huge and Unwieldy?
	Slide Number 23
	Correct-by-Construction Cryptography
	Correct-by-Construction Cryptography
	Generated Code
	Surprising (?) Fact About Modular Arithmetic
	Representing Numbers mod 2255 - 19
	Demo
	Slide Number 30
	The Basic Idea
	Example: Multiplication (for modulus 2127 - 1)
	Time for Some Partial Evaluation
	An Example
	Compiling to Low-Level Code
	Implementation and Experiments
	Q: Where do we get a lot of reasonable moduli?
	Many-Primes Experiment
	P256 Mixed Addition
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Specification?
	Key Layers of End-to-End Proof
	Disappearing Specs
	Expanding Scope
	Slide Number 47

