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Background

Artificial intelligence in music and beyond
My interests

o Perception

o Communication

o Embodiment

o Expressivity

Future challenges and opportunities



Technical Background

Main focus of research has been Music
Information Retrieval (MIR)

Involved from the early days in the field
(1999-2000)

Have published papers in almost every ISMIR
conference and in most MIR topics
Organized ISMIR 2006 in Victoria, Canada
Tutorials on MIR in several different
conferences



Music Background

Messing around with a piano keyboard from

when | started learning piano until today

Music theory and composition studies

Saxophone performance (classical )

Musical contexts and practice:

o Rock bands in high school

o Greek folk music in university

o Jazz and classical music in university and
graduate school

o Today experimental music
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e The question of whether a computer can think
Is no more interesting than the question of
whether a submarine can swim - E. Dijkstra

George Tzanetakis, University of Victoria



"= Maybe it actually is interesting
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e Personally my main motivation is to better
understand and appreciate the complexity
and beauty of human music making

George Tzanetakis, University of Victoria



Artificial Intelligence
(in music)

Paraphrasing my favorite quote by G. Box -
“All models are wrong some are useful”

“All artificial intelligence systems are not
intelligent some are useful”

The old driving vision: the great celestial jukebox
The new driving vision: a virtual musician

Parting lesson: to build useful systems
integration of all CS disciplines is needed



Deep Learning is not Al

Projects: binary CNNs, Unets for music

transcription, siamese networks for singer
clustering......

Claimed no feature engineering but the reality:

ML: parameter search (blind), feature design
(informed)

DL: architecture/layer/parameter search (blind)
loss function (informed)



Projects

Projects from my own body of work beyond your
typical ML system:

e Perception: teaching a virtual violinist to bow

e Communication: markov logic networks and a
programming language for stream processing

e Embodiment: music robots

e Expressivity: hybrid synthesis for expressive
drumming, soundplane, augmented reality
theremin
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"HIS MASTERS VOICE"

This trademark and the trademarked word
"Victrola'* identily all our prodects. Look wunder
the lid! Look on the label!

VICTOR TALKING MACHINE CO,, Camden, N. J.

George Tzanetakis, University of Victoria



Physical Modeling Meets
Machine Learning :
Teaching a virtual violinist to bow

e Digital sampling can provide high-quality
sounds but lacks the intimate control
afforded by acoustic instruments

e Physical modeling synthesis works by
directly simulating the physics of sound
production rather than storing waveforms

e It hasthe potential to provide expressive
control but like real instruments this control
Is not trivial and needs to be learned

George Tzanetakis, University of Victoria



Main idea

e Asinarealviolin correct bowing requires
feedback (both auditory and haptic)

e |Learnthe mapping of control-parameters to
good sound rather than explicitly program it

e Teachrather than program

e Basically develop a virtual ear

e Graham Percival - Masters at UVic, PhD at the
University of Glasgow, PostDocs at UVic and
NUS

Quote: With great control comes great fragility

George Tzanetakis, University of Victoria
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Physical Model

m No recordings of violin performance; we use physics [1]

e Wave equation for a stiff string with modal dampening

P y(x. t Py(x. t Iy(x. t dy(x.t

m Implemented as a C++ library, published under GNU GPLv3+

pL

Input parameters
e Violin string number s
o Left-hand finger position x;

e Bow-bridge distance x, velocity v, force

George Tzanetakis, University of Victoria
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System Architecture
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George Tzanetakis, University of Victoria



Before and after training

The virtual violinist plays scales and simple
exercises. A human teacher rates each notes on

ascalefrom 1 to 5. After several rounc
training the virtual violinist has learned

s of
the

mapping of control parameters to gooc

sound
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Three views of Human-Machine
Communication

e Human-Computer Interaction (pressing
buttons, viewing screens, listening to sounds,
gloves with sensors, virtual reality)

e Programming Languages (structured textual
or visual ways of creating software and
hardware systems)

e Machine learning (collection of annotated
data typically by humans)

George Tzanetakis, University of Victoria



Arpp programming language
(Jakob Leben)

Syntax based on recurrence equations
(write code like you write math)

Supports infinite and multi-dimensional and
multi-rate arrays (streams)

Efficient compilation using polyhedral
compilation
https://arrp-lang.org/

George Tzanetakis, University of Victoria
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Write code like you write the math - using the same equations

0;
b*x[n] - a*y[n-1];

y[O]
y[n]

Work with signals at different rates

y[n] = x[n*hop]

George Tzanetakis, University of Victoria
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Work with multi-dimensional streams

yln,k] = x[n+k] * w[k]

Do math with entire signals

x[n] = n;
y = sin(x/100*2*pi) * 0.5;



Musical analysis
of audio sighals using ML

e Most existing recent approaches focus on a
specific aspect (beat, tempo, chords,
structure) and use data-driven ML models

e What is missing:

o Human music perception understanding is
holistic, hierarchical and multi-faceted

o No easy way to communicate existing
knowledge such as rules of harmony

o No easy way to communicate partial
knowledge dynamically



Musical analysis
of audio signhals using Logic

e A more traditional alternative is to formulate
music analysis tasks as inferences using logic
formulations

e What is missing:

o Uncertainty about rules is difficult to
handle

o Low-level information extracted from the
audio recording is difficult to integrate

George Tzanetakis, University of Victoria



Markov Logic Networks (MLN)

Expressive formalism that combines
probilistic graphical models and first-order
logic inference

Highly flexible and expressive language for
the harmonic analysis of audio music signals
MLN is a set of weighted first-order logic
formulas that can be viewed as a template for
creating a Probabilistic Graphical Model
Softens logic rules from true/false to
probabilities
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g MLN example

Basic idea in Markov logic: to soften these constraints to handle
uncertainty. The weights reflect how strong a constraint is.

Example of a first-order
A major chord implies an ¥V x IsMajor(x) = IsHappy- w; = KB and Corresp Ondlng
happy mood. Mood(x) 0.5 Wefghts n the ML N‘

If two chords are neighbors, ¥ x V y AreNeighbors(x, w:
either the two are major y)=- (IsMajor(x) < IsMa- 1
chords or neither are. jor(y))

Knowledge Logic formula Weight

Ground Markov network
obtained by applying
S TRb the formulas to the

P U oo Y @ constants CM and GM
) ataw ) (M) chord

ArcNeighbors
(GM,CM)

AreNeighbors
(GM.GM)

Q{'M.c.\n / i
—-—-_.—-—"'-"‘-

George Tzanetakis, University of Victoria
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MLN for Chords/Structure

Flexibility of MLN: Prior global structural information

Formulas added to express the constraint that two same segment
types are likely to have a similar chord progression.

Predicate declarations
Observation(chromal, time)
Chord(chord!, time)

Weight |

The predicate SuccStr
allows considering wider
windows, as opposed to
consecutive frames via the
Succ predicate.

Suce(time, time)

SuceStr(time, time)
Formula
Prior observation chord probabilities:

Chor rf{F M, 0)

fr;t;([’{F UU =0)))

."m;(P(Bm{t =0))) ("'?mrd[ﬂ‘m 0)
Probability that the observation (chroma) has been emitted by a chord:
log(Plog|/CM)) Observation(og, t) A Chord(CAM 1)

log(Ploy -1 |Bm)) Observation(oy —y,t) A Chord(Bm,t)
Transition probability between two successive chords:

log(P(CM|CM)) Chord(CM, 1) A Suu(! a, b)) A Chord(CM, t2)

A chroma feature is observed at each time frame:
Observation(og,0) - - -
Observation(oy -y, N — 1)

log( P(Bm|Bm)) Chord(Bm. t;) A bf:u[!g t1) AChord(Bm,t;)

robabiliry 1

1ar simelar segments have the same chord progression.

Wetruct

Watruct

u

Chord(CM, ty) A SuceStr(ta, ty) A Chord(CM. t2)
Chord(C#M.t;) A Suce ‘7!:(!3 t1) A Chord(C#M,13)

Chord(Bm.t;) A Suce SH ts. t

A Chord(Bm. t:

The temporal order of the frames is known:
Suce(1,0) - -+
Suece(N —1,N — 2
rior information about position o
same segment type in the structure is given:
SuceStr(1,10)
SuceStr(2,11) - - -

George Tzanetakis, University of Victoria



=%

oy

University

28 Results for chord/structure

Chord LA results Stat. Sig.
@ lest-set: 143 hand-labeled MLN_chord | 72.57 & 13.51

songs for which the structure

tno

_ Figure: MLN _struct: MLN incorporating
was amblguous. prior structural information, MLN _chord:

@ Evaluation measure: chord baseline HMM, [36]: chromagram
label accu racy averaged over same segment types as in

[Mauch et al. 2009].

George Tzanetakis, University of Victoria
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Results for chord/key

Improving chord estimation using provided key information. Joint
estimation provides key estimation for free.

Chord LA Stat. Sig.
HMM 72.49 + 14.68 no
Chord MLN 72.33 + 14.78
Prior key MLN, WMCR | 73.00 = 13.91 yes
Prior key MLN, CB 72.22 +14.48 no
Joint chord/key MLN 72.42 4 14.46 no

EE EE E+N | Stat. Sig.
Joint chord/key MLN | 82.27 | 88.09 | 94.32
DTBM-chord 48.59 | 67.39 | 89.44 yes
DTBM-chroma 75.35 | 85.14 | 95.77 yes

George Tzanetakis, University of Victoria
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George Tzanetakis, University of Victoria



Human-Machine
Improvisation

In 2004 | joined the University of Victoria as
an assistant professor

Ajay Kapur was my first PhD student

Ajay: “l want to make a percussion robot that
Is able to improvise rhythmically North Indian
music with me playing the Sitar”

Me: “That’s too ambitious - focus on
something more specific”
Fortunately he ignored me

George Tzanetakis,




George Tzanetakis, University of Victoria



The E-sitar |

Example of a hyper-instrument i.e an acoustic
instrument that has been augmented with
sensors to detect what the performer is
playing

Network of resistors for detecting what fret is
being played

Thumb pressure sensor for thumb

Kiom (our version of the Wii-mote) for sensing
elbow and head tilt
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Engineering The E-Sitar II

Mhkis, University of Victoria




Real-time multi-modal
beat tracking
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George Tzanetakis, University of Victoria



Uniersty Mahadevibot
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Solenoid-based robot percussion
instrument. Bobbing head visually
conveys tempo information

George Tzanetakis, University of Victoria



Proprioception in music
robotics

The majority of existing music robots are
literally deaf i.e they only receive commands
and react to them

The ability to listen to the acoustic output has
concrete practical applications

Intelligent mapping of control messages to
actuators (play hi-hat rather than solenoid #3)
Volume calibration - play softly rather than
reduce voltage
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Drum classification for
modular mapping
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Peak | Percent | Peak | Percent

offset | correct | offset | correct
0 66.38 4 90.52
1 01.95 o 86.49
2 01.67 6 86.49
3 01.95 7 77.59

4 frame drums classification
Audio feature extraction
followed by SVM classification

George Tzanetakis, University of Victoria
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George Tzanetakis, University of Victoria



Mechatronic Drummer

University
of Victoria

Engineering Ro be rt Va n Ro oye n

The most advanced percussion

robot today in terms of expressiveness
and dynamic range.

Full motion control, can be driven
by data from gesture acquisition

Voice coil actuators for full dynamic
range and control of strike position

George Tzanetakis, University of Victoria



| Mechatronic Drummer

University
of Vlctorla

Robert van Rooyen

Guthman new instrument music

competition - technical achievement
award 2018

2018Guthman

3 w; : ol

George Tzanetakis, University of Victoria
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Gesture Acquisition

AR

J=110
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George Tzanetakis, University of Victoria
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Performer-specific
stochastic models
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George Tzanetakis, University of Victoria



EXPRESSIVITY

George Tzanetakis, University of Victoria



Expressive drumming

Electronic drums are simple triggers sending
MIDI messages

Not sufficient to convey the expressive
nuance and physicality of percussion
performance

Adam Tindale was my second PhD student
and classically trained percussionist
Hybrid-synthesis uses a physical membrane
(practice pad) to excite a synthesis model



Hybrid-synthesis for
expressive drumming
- Adam Tindale

George Tzanetakis, University of Victoria



Intimate control with
Soundplane - Randy Jones

George Tzanetakis, University of Victoria



Theremin

The Theremin is an electronic instrument
invented by Leon Thereminin 1928

It is controlled without physical contact by the
performers hands

Well-known from sci-fi movies it can be a very
expressive instruments in the hands of skilled
performers

Learning to play notes is challenging because
of the lack of haptic and visual feedback

George Tzanetakis, University of Victoria



Theremin

Carolina Eyck

George Tzanetakis, University of Victoria



Mixed Reality Theremin
- David Johnson

Use an actual physical
Theremin for playing
and sensing the hand
position

In VR place a virtual
representation in the
right place and
provide visual
feedback

George Tzanetakis, University of Victoria
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Visual Feedback

George Tzanetakis, University of Victoria



Performance data for
different training environments

NoVis Training Nolmm Training Imm Training

il b

George Tzanetakis, University of Victoria
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User study
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George Tzanetakis, University of Victoria



Concluding thoughts

Having a body (sensors and actuators) introduces
layers of possible failure that provide
opportunity for the sublime to occur
Collaboration and communication between
different entities - deeply personal and
communal at the same time

Music is not just pitches in time but has much
richer and nuanced layers of information

The challenges of perception, communication,
embodiment, and expressivity also apply to
general Al



Kadenze MIR program

e Three courses:
o Extracting information from audio signals
o Machine learning for music information
retrieval
o Music Retrieval Systems

e https://www.kadenze.com/programs/music-i
nformation-retrieval

George Tzanetakis, University of Victoria



Dedicated to David Wessel
(1942-2014)




