Learning the Language of Failure

Andreas Zeller B “ICIS PA

with Babul Gopinath and Zeler's team at CISPA

Learning the Language of Failure
Andreas Zeller, CISPA Helmholtz Center for
Information Security

Joint work with Rahul Gopinath and Zeller’s
team at CISPA

Watch: https://www.youtube.com/watch?v=3ZW1DI2Pxvl

When diagnosing why a program fails, one of
the first steps is to precisely understand the
circumstances of the failure — that is, when the
failure occurs and when it does not. Such
circumstances are necessary for three
reasons. First, one needs them to precisely
predict when the failure takes place; this is
important to devise the severity of the failure.
Second, one needs them to design a precise
fix: A fix that addresses only a subset of
circumstances is incomplete, while a fix that
addresses a superset may alter behavior in
non-failing scenarios. Third, one can use them
to create test cases that reproduce the failure
and eventually validate the fix.

In this talk, | present and introduce tools and
techniques that automatically learn
circumstances of a given failure, expressed
over features of input elements. | show how to
automatically infer input languages as
readable grammars, how to use these
grammars for massive fuzzing, and how to
systematically and precisely characterize the
set of inputs that causes a given failure — the
"language of failure".

https://andreas-zeller.info/
https://www.cispa.saarland/

Failure

Welcome everyone to "Learning the
Language of Failure". These five
words will follow us throughout the
talk. To begin, lets talk about failures.

Failure

Actually, my work always has been
about failures. (The work itself has
been less of a failure.)

Debugging Failures

1ot If you mae 2 mistake, ry Edit—>Undo. This vl undo the most [
recent debugger command and redlspiay the previous program state.

date| | Close Prev Tip Next Tip

Cadb) araph display *(1ist-onext-onaxt->selF) dependent on 4
(adb) [

e

st = (List *) 0xaadfe0

As a PhD student still, Dorothea
Litkehaus and myself built GNU DDD,
a GUI front-end for command line
debuggers. Great for debugging
failures.

NI certd smm || addrbook | compose | import

sssssss

rrrrrr

Later, my co-workers and | would
mine version and bug repositories to
see where in a program the most
bugs would be fixed. This is a map of
Firefox components (boxes) and
vulnerabilities (shades of red).

svg
7 H in lin ht bu
Mining Failure Data
s ps
src tamarin
xpconnect liveco core
src test
gtk
|
tdlib pcre code (MM
. shell plle
jsd

gfx
src

xlib | mac

0s2

windo

x11sh f

cairo
cairo
src

libpixma

TTojar

theb

qt |f
be xq
xpr

t
glitz
src

uuuuu

S 2007

Almost all vulnerabilities are in
JavaScript.

Simplifying Failures

8.2 - 27 - -9/ +((+9 * -=-2 + __+_+_((_1 *
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - -=(3 * -1.8 * +(6 * +-(((-(-6)
* ===46)) /[+-=(4-4-7 x (-0« (+(((((2)) + 8
-3 - 449.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-40)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

Interpreter

Another contribution my name is

associated with is simplifying failure-
inducing inputs. Here's a long input

that causes a program to fail.

Simplifying Failures

(8 -5)

Interpreter

Yet, only a part of this input actually is

relevant for the failure.

Delta Debugging

8.2 - 27 - =9 / +((+9 * -2 + —-+-+-((-1 *
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - --(3 * -1.8 * +(6 * +-(((-(-6)
* ===46)) /[+--(4-4-7 % (-0« (+(((((2)) + 8
-3 - 449.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

Interpreter

..

Delta debugging automatically
determines this failure-inducing
subset.

Delta Debugging

8.2 - 27 - -9/ +((+9 * -=-2 + __+_+_((_1 *
e(8 2 5 - 6)) & (-((=+(((+(#)))) - s34) / +
(-+---((5.6 - --(3 * -1.8 * +(6 * +-(((-(-6)
* ==-46)) / +--(+-+-7 *

Interpreter

Delta Debugging takes away parts of
the input and checks whether the
failure still occurs.

Delta Debugging

(-0 = (+(((((2))
-3 - +49.0 + ---(--+7 / (1 / +++6.37) +
/ 482) / +++-40)))) * -+5 + 7.513)))) -
(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 * --++090

+ 8
(1)

Interpreter

e 2002

Such reduced inputs can be invalid,
though.

Delta Debugging

#((+#9 % --2 + ——+-+-((-1 =
+(8 -5 -6)) * (=((-+(((+(4))))) - ++4) / +
(-+---((5.6 - -=(3 * -1.8 » +(6 * +-(((-(-6)
® ===+6)) / +=-(4-+-7 » (-0 * (+(((((2)) + 8
- 3 - ++49.0 + __—(——+7 / (]_ / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 * --++090

...

Interpreter

Then, delta debugging takes out
smaller parts and repeats.

Delta Debugging

(8 -5)

Interpreter

Simpitying and Islating Fallur-inducing Input. TSE 2002

At the end, it easily determines which
characters are necessary for the
failure to occur.

Delta Debugging

1 (8 -5)

Interpreter

e 2002

Such as these ones, for instance.

Association for
g Computing Machinery Advancing Computing as a Scence & Professon

T;m is to certify that

Andreas 4[& -

has been honored with the designation of

ACM FELLOW
in recognition of outstanding technical and professional

achievements in the field of information technology.

] :
i 2011 M Glomos

These things made me an ACM
Fellow "For contributions to
automated debugging and mining
software archives".

Failure

* You can mine version and bug histories to find out where the failures are
* You can simplify inputs to find out what causes the failure

* You can make a career out of failure

Which tells you that you can make a
career out of failures.

The Language of Failure

Okay, that was failures. Now, let's
move to languages.

Fuzzing

8.2 - 27 - =9 / +((+9 * -2 + —-+-+-((-1 *
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - --(3 * -1.8 * +(6 * +-(((-(-6)
* ===46)) /[+--(4-4-7 % (-0« (+(((((2)) + 8
-3 - 449.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

Interpreter

Fuzzing means to throw random
inputs at a program to see if it
crashes.

Dumb Fuzzing

(144 60)5(5-(05%/(=* %)910)25/509505)3)/
09211762 /(7%+22)76-+/29+/4*x2+

8()04/844)
4)632/3/7 *0525+)7+

Interpreter

But if you just take sequences of
random characters and throw them at
an interpreter, all you're going to get is
syntax errors. (It's okay to test syntax
error handling, but this should not be
all.)

Grammars

(start) 1= (expr)

(expry —=—(term) + (expr) | (term) - <(expr) |((term)

(term) ::= (term) * (factor) | (term) / (factorr<—factor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) ci= (digit) (int) | (digit)

(digit) =0 11201314l 5161 71819

In order to get syntactically valid
inputs, you need a specification. A
grammar specifies the set of inputs
as a language.

You may have seen grammars as

Grammars as Producers parsers, but they can also be used as

(start) ::= (expr)

(expr) ::= (term) + <(expr) | (term) - <(expr) | (term) 1

(term) ::= (term) * (factor) | (term) / (factor) | (factor) prOducers Of InpUtS'
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | {int) . (int)

(int) ::= (digit) (int) | (digit)

(digit) c:=0 112131415161 71819

You start with a start symbol
Grammars as Producers

(start) ::= (expr)

(start)

Grammars as Producers

(start) ::= (expr)

(start)

Grammars as Producers

(expr) 1i= (term) - (expr)

(expr)

which then subsequently gets
replaced according to the production
rules in the grammar.

Grammars as Producers

(expr) si= (term) - (expr)

(term) - (expr)

If there are multiple alternatives, you
randomly choose one.

Grammars as Producers

(term) ti= (factor)

(term) - (expr)

Grammars as Producers

(term) ii= (factor)

(factor) - {(expr)

Grammars as Producers

(factor) ::= (int) . (int)

(int) . (int) - (expr)

Grammars as Producers

(int) ti= (digit)

(digit) . (int) - (expr)

Grammars as Producers

(int) ti= (digit)

(digit) . (digit) - (expr)

Grammars as Producers

(digit) ::= 8

8. (digit) - (expr)

Over time, this gives you a
syntactically valid input. In our case, a
valid arithmetic expression.

Grammars as Producers

(digit) ::= 2

8.2 - (expr)

Actually, a pretty complex arithmetic
Grammars as Producers

expression.
(start) = (expr)
(expr) = (term) + (expr) | (term) - <(expr) | (term)
(term) = (term) = (factor) | (term) / (factor) | (factor
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | {int) . (int)
(int) = (digit) (int) | (digit)
(digit) =0l 112131415161 71819

8.2 - 27 - -9 / +((+9 * --2 + -—-+-+-((-1 *
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - -=(3 * -1.8 * +(6 * +-(((-(-6)
* ===46)) / #-=(+-+-7 = (-0 = (+(((((2)) + 8
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

These can now be used as input to

Fuzzing with Grammars your program.

8.2 - 27 - -9 / +((+9 * --2 + --+-+-((-1 *
+(8 - 5 -6)) * (=((-+(((+(4))))) - ++4) / +

(-+---((5.6 - --(3 * -1.8 * +(6 * +-(((-(-6)

* _--+6)) / +--(+-+-7 * ('0 * (*(((((2)) + 8 Interpreter
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1) i

/ 482) / +++-40)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+

+-9.0)))) / 5 % --++090

Fuzzing with Grammars

Fuzzing with Grammars

JavaScript Grammar *

rvistian i, Kim erzi, and Ancroas Zosr. Fuzzing with Code Fragments. USENX 2012.

A couple of years ago, we used a
JavaScript grammar to fuzz the
interpreters of Firefox, Chrome and
Edge.

My student Christian Holler found
more than 2,600 bugs, and in the first
four weeks, he netted more than
$50,000 in bug bounties. If you use a
browser to read this, one of the
reasons your browser works as it
should is because of grammar-based
fuzzing.

The Language of Failure

« Alanguage spec trivially gives you infinitely many, syntactically valid inputs
« Generation can be guided by grammar coverage/code coverage/probabilities

« Easily taught and applied

And if you are interested in how to
use grammar for fuzzing, the book will
give you lots of inspiration.

Learning the Language

But all of this still requires a grammar
in the first place.

Fuzzing with Grammars

So where did you get this grammar
from?

Mining Grammars

(start) ::= (expr)

(expr) ::= (term) + (expr) | (term) - ({expr) | (term)

(term) ::= (term) = (factor) | (term) / (factor) | (factor)
(factor) ::= + (factor) | - (factor) | ({(expr)) | {int) | (int) . (int)
(int) ::= (digit) (int) | (digit)

(digit) =0l 112131415161 71819

void parse_expr() {
parse_term();

if (lookahead() == '+') { consume(); parse_expr(); }
if (lookahead() == '-') { consume(); parse_expr(); }
}
void parse_term() { ... }
void parse_factor() { ... }
void parse_int() { ... }

void parse_digit() { ... }

So let me tell you a bit about how to
mind such grammars. The idea is to
take a program that parses such
inputs and extract the input grammar
from it.

Rules and Locations

(expr) ::= (term) + <(expr) | (term) - <(expr) | (term)

void parse_expr() {
parse_term();

The interesting thing is that there is a
correspondence between individual
rules in the input grammar and
locations in the parsing code.

if (lookahead() == '+') { consume(); parse_expr(); }
if (lookahead() == '-') { consume(); parse_expr(); }
}
Consumption
he character /s last accessed
(conswunmed) in 2his method

void parse_expr() {
parse_term();
if (lookahead() == { consume(); parse_expr(); }
if (lookahead() == { consume(); parse_expr(); }

}

The concept of consumption
establishes this correspondence. A
character is consumed in a method
m if m is the last to access it.

Consumption

For each input character, we dynamically track where it is consumed

1+ (8 -5)

rrrrrrrrrrr

Consumption

parse_term()

-
/

parse_digit()

Fanu Gopintn, Bom M,

parse_factor()

(/8-

parse_digit() parse_expr()

sssss

5)

parse_digit()

During program execution we can
track where characters are consumed
using dynamic tainting.

Consumption

parse_digit()

uuuuuuuuuuuuuuuuuuuuuuuuu

parse_term()

parse_factor()

parse_expr()

parse_digit() par

sssss

se_digit()
\

5)

This gives us a tree like structure.

Parse Tree

parse_digit()
/

parse_term()

parse_factor()

parse_expr()

parse_digit() par

rrrrrrrrrrr

se_digit()
\

5)

Which we can augment with caller-
callee relations.

parse_term()

Parse Tree

parse_term()
parse_factor()
7
parse_int() parse_int()
/

-
parse_digit() parse_digit()
/

Fahul Gopinth, B Mthis,anct Anroas Zoll. ining Input Grammarsfrom Dynamic Control Flow, ESECIFSE 2020,

parse_expr()
parse_term() parse_term()
\

parse_factor()
;

parse_factor()

parse_expr()

parse_factor()
<
parse_int()

parse_digit()
\

- 5

Even for those functions which do not
consume anything.

(term)

If we take the function names and

Parse Tree it only use the nouns, we can use those
o nouns as non-terminal symbols.
<e><pr)/ \
(term) (ter/m> (tel\‘m)
(facto/r> (Fact/or> (fact&\)r)
(int) (int) (int)
(digit (digit) (digit)
/ \
8 - 5
(term) From these parse trees, we can now
Mining a Grammar (Factor)

(expr)
(term) (term) (term)
s / .
(factor) (factor) (fact&\)ﬂ
(int) (int) (int)
7/ 4 \
(digit) (digit) (digit)
/ \

Fahul Gopinlh, B M, anc Androas ol Mining Input Grammars from Dynamic Control Flow. ESECIFSE 2020,

(expr)

- 5

mine a grammar.

A term obviously can consist of

(term)
Mining a Grammar (Feccon another term, a multiplication symbol,
and a factor.
(term)
*
So we add this as a rule to our
Mining a Grammar grammar.
(term) ::= ‘(term> * (factor)
(term) (term) (tel\”m)
(facto/r) (fact/or> (factor)
And likewise for other symbols.
Mining a Grammar (factor)
(term) ::= (term) =+ (factor)
| (factor)
1= {expr)

rrrrrrrrrrr

Mining a Grammar
(term) ::= (term) =« (factor)
| (factor)
(factor) ::= ((expr))
|
(factor) (factor) (Factt\)r)
(int) (int) {int)

From this single input, we already get
Mining a Grammar the basics of a grammar.
(start) ::= (expr)
(expr) = <te$m) - (expr) | (term)
(term) = (term) * (factor) | (factor)
(factor) = ({expr)) | (int)
(int) = (digit)
(digit) =11518

And if we add more inputs, ...
Completing the Grammar

(start) = (expr)

{expr) = (term) - (expr) | (term)
(term) = (term) * (factor) | (factor)
(factor) = ({expr)) | (int)

(int) = (digit)

(digit) =11518

4

Parse tree

4

0+ 2

Rahu Gopinth, Bom Mz, SECrSE 2020

Completing the Grammar

(start) = (expr)

(expr) = (term) + (expr) | (term) - (expr) | (term)
(term) = (term) =+ (factor) | (factor)

(factor) ::= ((expr)) | (int)

(int) = (digit)

(digit) =0l1l21518

4

Parse tree

4

0+ 2

Fanu Gopintn, Bom M, se 2020

... the grammar reflects the structure
of these additional inputs.

Completing the Grammar

(start) = (expr)

(expr) = (term) + (expr) | (term) - (expr) | (term)
(term) = (term) + (factor) | (factor)

(factor) ::= ((expr)) | (int)

(int) = (digit)

(digit) =0l1l21518

4

Parse tree

4

0+ 2
+3 / -46.79

st 2020

Completing the Grammar

(start) = (expr)

(expr) = (term) + ({expr) | (term) - (expr) | (term)
(term) = (term) = (factor) | (term) / (factor) | (factor)
(factor) = + (factor) | - (factor) | ((expr)) | (int) | (int)
(int) = (digit) (int) | (digit)

(digit) =0 l1l213l4l516171819

4

Parse tree

4

0+ 2
+3 / -46.79

SECrSE 2020

. (int)

We now have successfully mined our
example grammar.

Mimid: A Grammar Miner

Our Mimid grammar miner takes a
program and its inputs and extracts a
grammar out of it. This grammar can

Fuzzers
directly be used by fuzzers, parsers,
m Input grammar Humans and humanS
Inputs
Parsers
The extracted grammars are well
(start) ::= (json_raw)
(json_raw) ::J= " (json_string’) | [(json_list’) | { (json_dict’) Structured and human readable aS
| (json_number’) | true | false | null . .
Goonstring coe (pace) L4 1a 1§ 1% 151 you can see in this grammar extracted
LT 31) Ralzecroiols 1\ edode evcape) from a JSON parser.
(decode_escape) "I /1Iblflnlrlt
(json_list’) ::= Humans
| (Gson_raw) (, (json_raw))*]

I (, (json_raw))+ (, (json_raw))*]
(json_dict’) ::= }

| (" (json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

(json_string") (json_string)* "

(json_number ")
{json_number)

(json_number)+ | (json_number)+ e (json_number)*
+ -1 .1 /[6-91/ | E | e

(start) ::= (json_raw)

(json_raw) ::= " (json_string’) | [(json_list’) | { (json_dict’)
| (json_number”) | true | false | null

(json_string) ::= (space) | ' | # | $ 1% &|"

sl el -0, 0.0/1:1;

l<lt=1)y l2talt i r~0r_1,1"1

{111 %}1 ~1 /[A-za-z6-9]/ | \ (decode_escape)
(decode_escape) "1/ 1blflnlrlt

(json_list’) ::= Humans
| {json_raw) (, (json_raw))*]

I (, (json_raw))+ (, (json_raw))*]

(json_dict’) ::= }
| (" (json_string’) : (json_raw) ,)*
| " (json_string’) : (json_raw) }

(json_string") (json_string)* "

(json_number")
(json_number) ::

(json_number)+ | (json_number)+e (json_number)+
+ -1 .1 /[6-91/ | E | e

Humans can edit these grammars.

Fuzzer *

(start) ::= (json_raw)

(json_raw) ::= " (json_string’) | 10% [(json_list’) | 50% { (json_dict")
| (json_number’) | true | false | null

(json_string) ::= (space) | ' | # | $ 1% 161"

[I I I I 2 T

l<l=1) lz2lallr2r~1_1,1"1

{111 %}1 ~1 /[A-za-z6-9]/ | \ (decode_escape)

(decode_escape) ::= " | / | b | flnlr]|t

(json_list’) ::=] * Humans

| (json_raw) (, (json_raw))*]

I (, (3son_raw))+ (, (json_raw))*]
(json_dict’) ::= }

| (" (json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

(json_string’) ::= (json_string)* "
(json_number’) ::= (json_number)+ | (json_number)+e (json_number)+
(json_number) ::= + | - | . | /[6-91/ | E | e

For instance, by assigning
probabilities to individual productions.

Fuzzer *

(start) ::= (json_raw)

(json_raw) ::= " (json_string’) | [(json_list’) | { (json_dict”)
| (json_number’) | true | false | null

(json_string) ::= (space) | ' | # | $ 1% | & "

[I I I N 2 I

l<l=1) lz2lallr2r~1_1,1"1

{111 %}1 ~1 /[A-za-z6-9]/ | \ (decode_escape)
(decode_escape) ::= " | /I bl flnlrlt

(json_list’) ::=]
| {json_raw) (, (json_raw))*]
1 (, (json_raw))+ (, (json_raw))*]

* Humans

(json_dict’) ::= }
| (" (json_string’) : (json_raw) ,)*
| " (json_string’) : (json_raw) }

Or by inserting magic strings that
program analysis would have a hard
time finding out.

(json_string’) ::= (json_string)*" | '; DROP TABLE students"
(json_number’) ::= (json_number)+ | (json_number)+e (json_number)+
(json_number) ::= + | - | . | /[0-9]1/ | E | e
This change to the grammar injects
{ "'; DROP TABLE STUDENTS" , "/h?0 ": [1, "": "" , "x": false ,
firthh e oroe maate smewrst, *+: 47 1 SQL statements everywhere. Do not
§ " }v " False, "X N7t " [true]y s []1 " {
r do this at home, folks — thank you.
S L1, "y DROP TABLE STUDENTS",
[70.3076998940e6 1, "Ju": true } }
{ " ’ " true, " " []y "
-096860E+0, "U":
Fuzzer * { "ria": [true, "'; DROP TABLE STUDENTS", null, [false, { } 1,
: null, "": true, "7": 208.00E4, "": true, "":

zJ": [false, false]}

DROP TABLE STUDENTS" }

“'; DROP TABLE STUDENTS" }

-64.0e-06, "": [{ "p[f": false, "": "'; DROP TABLE STUDENTS",
[], "": true, "8D": -0, "@R": true }]}

DROP TABLE STUDENTS" }

; DROP TABLE STUDENTS", "zJzjT": 6.59 }

false }

c": [false, 304e+008520, null, false, "';
"m{MD" , [false 11}

DROP TABLE STUDENTS",

Mimid: Evaluation

FEEEE

* Mined grammars can generate ~98% of the actual language

* Mined grammars can parse ~92% of the actual language

* Works on modern combinatory parsers, too

Fahul Gopinth, B Mthis,anct Anroas Zoll. ining Input Grammarsfrom Dynamic Control Flow, ESECIFSE 2020,

The grammars extracted by Mimid are
accurate as producers as well as as
parsers.

Learning the Language

* Learn readable language specs (grammars) automatically
* Mined input grammars are accurate: ~98% generating, ~92% parsing

* Learn from given program only; no input samples required

So this was about learning (input)
languages.

Mining Grammars without Samples

Fuzzers
m Input grammar Humans

Inputs
Parsers

Parser-Directed
Test Generator

Our grammar miner needs inputs in
the first place. But we also have
specific test generators that
systematically cover all alternatives in
a parser. So technically, all you need
is the program to test.

Learning the Language

* Learn readable language specs (grammars) automatically
* Mined input grammars are accurate: ~98% generating, ~92% parsing

« Learn from given program only; no input samples required

And now for the main point.

Learning the Language of Failure

We have seen how single inputs
cause failures. But are these the only
inputs?

Circumstances of Failure

P

For which other inputs does this hold?

From Inputs to Languages

Input grammar

We want to know the set of inputs
that causes the failure — in other
words, the language. To this end, we
parse the input into a tree.

From Inputs to Languages

Does the failure occur for other (int) values?

To find out whether the failure occurs
for other integer values too, ...

From Inputs to Languages

Does the failure occur for other (int) values?

... we replace parts of the parse tree
(8) by newly generated alternatives
(27).

and find that this one fails as well.
Patterns of Failure

P

aa

Actually, the program fails for any
integer in this position. So we can
come up with an abstract pattern that
represents the set of failing inputs.

Patterns of Failure

Lr Clny = 9)

1+ (8 -
1 % (27 -
1+ (3-5
1 % (205 -

By repeating this, we can come up
with a general pattern of which all
“The error ocours whenever * is used in conjunction with —* instantiations cause the failure. These
instantiations also serve as test cases

(expr) * ((expr) - (expr)) for validating a fix.

1+ ((++1) - 27 X
(2-3) «(8.2--387)X test cases
(3 + 4.2) » (8 - +4) X | for the failure
(-3.5) * (23 - 05) X

Patterns of Failure

DDSet

Pattern

Grammar

Our tool DDSet takes a program, a
failing input, and a grammar, and
produces such a pattern of failure.

DDSet: Evaluation

€ o & eo
O OT T

Clojure GNU find GNU grep

Closure Rhino

« For 19 of 22 bugs, concrete inputs could be abstracted into patterns
* 91.8% of inputs from patterns were semantically valid; 98.2% reproduced the failure

« Patterns serve as diagnostics as well as producers

aaa

In our evaluation, this works really
well.

Input Features

(expr) = ((expr) - (expr))

« Failure could also occur for other inputs — how about / or + ?

« Failure could depend on non-structural features like length, value, etc.

But we can go even further. What
other features in the input cause a
failure?

Input Features

3 (term) » (factor)
3 (term) - (expr)
3 ((expr))

n
[N

31 35 38 1% (8 -5) unce Tost
len((int))
max((int))

min({(int))
len((start))

Which of these features correlate with failure?

NiolasHavrikon and Ancheas Zoer

We introduce a number of input
features, including existence, length,
and maximum and minimum values of
specific input elements.

Learning Failure Models

71X
Features

Inputs Features Model V4 | X

These features together with a pass
and fail label then go into a machine
learner which produces a predictive
model.

Learning Failure Models

Inputs Features Model 4 | X

Actually, the produced model serves
as a model of the program as it
comes to failures or non-failures.

Training a Classifier

Labeled Inputs
1+ (8-5)X

27 + 34

-1 %23+ 4y

Features
31 35 38
len((int)) = 1

32 33 37
max({(int)) = 27

31 32 33 34
min((int)) = -1

Decision Tree Learner

In our experiments, we use decision
tree learners as their results are easy
to understand.

Training a Classifier

Labeled Inputs
1+ (8-5)X

27 + 34

-1 %23+ 4y

Features
31 35 38
len((int)) = 1

32 33 37
max((int)) = 27

31 32 33 34
min((int)) = -1

Here is a decision tree that classifies
the three inputs on the left. We see
that the existence of the digit 8 serves
as classifying feature. The model is
consistent with all the observations
made so far.

Training a Classifier

Labeled Inputs
1+ (8-5)X

27 + 34

-1 % 23 + 4 f

Features
31 35 38
len((int)) = 1

32 33 37
max((int)) = 27

31 32 33 34
min((int)) = -1

len({(int)) = 1?

Jes

'// X

The learner also could come up with
another model over the presence or
non-presence of multi digit integers.
Is any of these correct?

Training a Classifier

Labeled Inputs Features
1% (8-5)x 31 35 38
len((int)) = 1

Failures are scarce —
27+34 3233 37 so how can we get

max((int)) = 27 sufficiently many inputs?

-1 x 23+ 4 31 32 I3 T4
min((int)) = -1

NiolasHavrikon and Ancheas Zoer

What we need is more inputs and
more observations to come up with a
more precise model.

Refining Models

/1x
Features

Inputs Features Model V4 | X

New inputs
to refine the model

We create new inputs right from the
model learned so far.

Training a Decision Tree

Labeled Inputs Features
1%(8-5)x 31 35 38
3 87

len((int)) =1 RN

\ yes

27 +34 32 33 37
max((int)) = 27

123+ 4 31 32 33 34 J x

min((int)) = -1

\

— Generate more inputs — with and without deciding feature!

Specifically, for every path in the tree,
we generate more inputs.

Training a Decision Tree

Labeled Inputs
1+ (8-5)X

no yes
27 + 34 7\

-1 %23+ 4y J x

Training a Decision Tree

Labeled Inputs

1%(8-5)X 3 87
27 + 34 Y 8\'
-1 % 23 + 4 J ,,E;/,/ \yeS
1+ (27 - 5)X / \
_ New inputs
41+ =34 | ithout 3 8 J
2+ /)
1% (27 + 8) X
_ New inputs
8+ 27V | pin3s
82 +2y

So, here are more inputs with and
without the digit 8. For every input, we
test whether the failure occurs.

Training a Decision Tree

Labeled Inputs
1+ (8-5X

27 + 34 v
-1 %23 + by o/ N\ es
/ \

- / \
1x@7-9X : 3 ((expr))?
41+ -3y New inputs PN

without 3 8 o / N e
2+ /D4 AN
8 x (27 + 8) X
_ New inputs / x
8+ -27Y | Lin3 8

8x2+2y

For these inputs, the old hypothesis
no longer holds. The decision tree
now comes up with a more detailed
model.

Decision Tree 3 (expr) * ((expr) - (expr))?

I (expr) * ((expr‘/;‘+ (expr)) ? x

no_- s

3 ((expr) - (expr)) / (expr)? x
no/// yes
s
3((expr) + <gxpr>) / (expr) ? x
no /// \\ yes
e AN

If we repeat this a number of times,
we end up with this decision tree
which now accurately characterizes
the circumstances of failure.

The Failure Circumstances

“The program fails when the distributive law can be applied”

(expr) * ((expr) - (expr))
(expr) *= ((expr) + (expr))
((expr) - (expr)) / {expr)
((expr) + (expr)) / (expr)

Can be used as explanation, as producer, as predictor

And this now tells us under which
circumstance the failure occurs -
namely, whenever the distributive law
can be applied.

Alhazen

Inputs Jl X
New inputs
to refine the model 5

Inputs * { AT Model Jl X

We named our approach Alhazen,
after Hasan Ibn al-Haytham (Latinized
as Alhazen /eel'haezan/; full name Abu
‘All al-Hasan ibn al-Hasan ibn al-
Haytham o sl o Gl cole 53
alagll; €.965 - c.1040) — an Arab

mathematician, astronomer, and
physicist of the Islamic Golden Age.

Alhazen

Observations

Experiments

Hypotheses

nnnnnn

Alhazen was an early proponent of the
concept that a hypothesis must be
supported by experiments based on
confirmable procedures or
mathematical evidence—an early
pioneer in the scientific method five
centuries before Renaissance
scientists.

Alhazen

Inputs
x Alhazen

Alhazen takes a program, failing and
passing inputs, and a grammar.

Inputs‘/

Grammar
By abstracting over observations, and

Alhazen . .
gradually refining hypothesis through
experiments, Alhazen produces a
Observations inete predictive (and generative) model on
Experiments Model whether failures occur or not.

X

Hypotheses

Alhazen

Program

Fuzzer Model

Grammar Miner

Since the passing and failing inputs
can come from a fuzzer, and since the
grammar can come from a miner, ...

Alhazen

Model

... Alhazen actually only need the
program to be debugged to produce
a model.

Alhazen: Evaluation

€3 e

Closure Rhino Genson Calculator GNU find GNU grep

» As a predictor, Alhazen models classify 92% of all inputs correctly
» As aproducer, ~68.5% of produced inputs correctly cause failures

» On average, decision trees refer to less than 5% of all input elements

Alhazen works great as a predictor
and as a producer. Also, the decision
trees refer to a small subset of the
input grammar, allowing developers to
focus on these.

Grep Crash

“grep crashes when --fixed-strings is used together with an empty search string“

3 (fixed-strings) ?

AN
AN
AN

len(<searc;1)) = 07 J

AN
yes " o
// \

AN

/ AN
yes / . no
/

Here is an example. Alhazen correctly
determines the circumstances of a
grep crash.

Nethack Crash

“NetHack crashes when a line in the config file has more than 619 characters*”

len((line)) =< 619?
ws O\

no
N
AN

S X

Since my time as a PhD student, |
always wanted to have a slide with
NetHack on it. This is how Alhazen
explains the circumstances of a
NetHack crash.

Learning the Language of Failure

* Learned behavior models explain, produce, predict (failing) behavior
* Models refer to terms from problem domain rather than internals

» Generalizes to arbitrary predicates on program behavior

So this is learning the language of
failure — the set of inputs that causes
a program to fail.

The Fuzzing Book v About this Book v © Resources v

The Fuzzing Book

Tools and Techniques for Generating Software Tests

by Andreas Zeller, Rahul Gopinath, Marcel Bshme, Gordon Fraser, and Christian Holler

About this Book

Welcome to "The Fuzzing Book"! Software has bugs, and catching bugs can involve lots of
effort. This book addi this problem by fiware testing, specifically by
generating tests automatically. Recent years have seen the development of novel techniques
that lead to dramatic improvements in test generation and software testing. They now are
mature enough to be assembled in a book - even with executable code.

from fuzzingbook utils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")

= The Fuzzing Book v IS Aboutthis Book v © Resources~ % Sharev @ +

About this book
<& Sitemap

IR ing Book

Lexical Fuzzing »

jues for Generating Software Tests

Syntactical Fuzzing » i
té) aser, and Christian Holler

Semantical Fuzzing » Mining Input Grammars
Domain-Specific Fuzzing » Tracking Information Flow.

lanaging Fuzzing » Concolic Fuzzing

D SR d catching bugs can involve lots of

oftware testing, specifically by

e development of novel techniques
that lead to dramatic improvements in test generation and software testing. They now are
mature enough to be assembled in a book - even with executable code.

Index (beta) Mining Function Specifications.

I gbook_utils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")

‘The Debugging Book / v

The Debugging Book

Tools and Techniques for Automated Software Debugging
by Andreas Zeller

About this Book

Welcome to "The Debugging Book"! Software has bugs, and finding bugs can involve lots of

effort. This book add this problem by i ftware specifically by
locating errors and their causes automatically. Recent years have seen the development of
novel techniques that lead to dramatic impi in software ing. They

now are mature enough to be assembled in a book - even with executable code.

This book is work in progress. It will be released to the public in the beginning of
2021,

= The Debugging Book £ + bout this Book v © Resources v % Share~ © ~

About this book

RPN _ O Oing Book

Tracking Failures £ »

g 4 aaimaame t\are Debugging
Observing Executions / » Tracing Executions
Automatic Experiments / » How Debuggers Work
Abstracting Failures / » Asserting Expectations £
I Automatic Repair £ » Tracking Failure Origins £
Appendices » Statistical Debugging , and finding bugs can involve lots of
ncex o) oftware debugging, specifically by
jr causes automatically. Recent years have seen the development of
novel techniques that lead to dramatic impi in software They
now are mature enough to be assembled in a book - even with executable code.

This book is work in progress. It will be released to the public in the beginning of
2021

¥ @AndreasZeller

Patterns of Failure

Mining Grammars

“The error occurs whenever * is used in conjunction with

Fuzzers
= Humans (expr) = ((expr) - (expr))
) . Parsers 10 (o)) - @)X
(2 -3) v (8.2 - -387) X | o5t cases
oo b | s rumbr)- » Jon_nbar) (3 +4.2) « (8- +4) X | forthe failure
/T : (-3.5) + (23 - 05) X

Learning Software Behavior Refining Models

“grep crashes when ~fixed-strings is used together with an empty search string'

— Vv X

Inputs —»
3 (fixed-strings) ?
AN I_. mﬁs_.,_l
ts

maxlen((search)) = 02
/ Y, New inputs

to refine the model

Inputs = Features —— Model ——— | X

CISPA

¥ @AndreasZeller

That's all! If you like this work, and
want to know more, follow me on
Twitter or visit my homepage at
https://andreas-zeller.info/. See you!

