

Earphones: The Next Computing Platform after Smartphones

Romit Roy Choudhury

Samsung

Launch your default

Voice Command setting (Bixby, Google Voice, S Voice) Ambient Sound mode, Reject a call

Hold Double Tap & Hold

Next playlist

The Future of Personal Audio

just the tip of the iceberg

Ambient Sound mode, Reject a call

Dolby, Oculus

. . .

Sensors, hardware

Primitives, Algorithms

Primitives, Algorithms

sus

Reading and typing, a cognitive re-focus

Voice + hearing seamless for humans

Reading and typing, a cognitive re-focus

Voice + hearing seamless for humans

Phone, watch, fitbit = quantified lower body

Earables gateway to upper body, head

fitbit

Reading and typing, a cognitive re-focus

Voice + hearing seamless for humans

Phone, watch, fitbit = quantified lower body

Earables gateway to upper body, head

Socially well accepted (unlike, Google Glass)

Takes off one important risk factor

But what are **hurdles** ... **show-stoppers?**

2 Discomfort

3 Privacy / Shy

Many Hurdles ... but not Insurmountable

Energy

Hollow

Whisper Zone

Low Frequency

Privacy / Shy

We are building a **software library** for Earable Computing

With particular interest in the more challenging problems ...

Low SNR Speech Recognition (whisper)

Low SNR Speech Recognition (whisper)

Voice assistants

$$\begin{array}{c} h_{air}(t) * V(t) + N_{backgr}(t) \longrightarrow \\ \left(f_{alias}(h_{solid}(t) * V(t)) \right) + n_{thermal}(t) \longrightarrow \\ \end{array} \begin{array}{c} \text{Whisper} \\ \text{Decoder} \end{array} \longrightarrow \hat{V}(t) \longrightarrow \\ \text{ASR} \end{array}$$

Different propagation delays at two ears

But delays are not unique along **hyperbola**

But delays are not unique along **hyperbola**

Personal Transfer Function

But delays are not unique along **hyperbola**

Personal Transfer Function

Indoor localization

Indoor localization

Motion tracking

Motion tracking Indoor localization $Location(L_t) = L_0 + \sum_{t} f(\Delta d, \Delta \theta)$ $s\overline{teps}$ $\Delta \theta = f(gyroscope, compass)$ $\Delta d = f(accelerometer, compass)$

Motion tracking Indoor localization $Location(L_t) = L_0 + \sum_{t=1}^{\infty} f(\Delta d, \Delta \theta)$ $s \overline{teps}$ $\Delta \theta = f(gyroscope, compass)$ $\Delta d = f(accelerometer, compass)$
Motion tracking Indoor localization

Motion tracking Indoor localization

Body/skeleton is a natural low pass filter

Indoor localization

Motion tracking

Body/skeleton is a natural low pass filter

Beamforming to Speech

Estimate Angle of Arrival (AoA)

Beamforming to Speech

Estimate Angle of Arrival (AoA)

Estimate Angle of Arrival (AoA)

Iterative Align and Cancel (IAC) Algorithm

THEOREM 3.1 (IAC AOA DECODING). For a given pair of microphones, the k residue vectors from aligning and canceling each of the k AoAs are linearly dependent.

Cancellation with **Hollow** earbuds

Activities = Eating, Drinking, Brushing

Note: in all these movements, it's the lower jaw which moves

Ear Impulse Response (EIR)

Questions thus far ...

Part II

Design a **hollow** earable that can still **cancel noise**

Existing Solutions

2. IoT relay forwards sound over wireless

1. Sound starts

Wireless radios travel a million times faster than sound

6

Analogy: Light travels much faster than sound

Lookahead allows us to cover ears in time

MUTE: Leverage **lookahead** for noise cancellation

Talk Outline

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Signal Processing Gain \rightarrow

Application-Specific Gain \rightarrow

Non-Causal Filtering

Wideband Cancellation

Sound Source Profiling

Talk Outline

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Signal Processing Gain \rightarrow

Wideband Cancellation

Non-Causal Filtering

Application-Specific Gain \rightarrow

Sound Source Profiling

Noise Cancelling Headphones -- What is inside?

Anti-Noise Speaker

How do they perform today?

Why does noise cancellation not work at higher frequencies?

Let's look into the headphone again.

Time

4

Let's now look at noise cancellation in MUTE ...

Cancel high frequencies

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Signal Processing Gain \rightarrow

Wideband Cancellation

Non-Causal Filtering

Application-Specific Gain \rightarrow

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Wideband Cancellation

Signal Processing Gain \rightarrow

Non-Causal Filtering

Application-Specific Gain \rightarrow

"Lookahead" \rightarrow Non-Causal Filtering \rightarrow Better Cancellation

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Wideband Cancellation

Signal Processing Gain \rightarrow

Non-Causal Filtering

Application-Specific Gain \rightarrow

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Wideband Cancellation

Signal Processing Gain \rightarrow

Non-Causal Filtering

Application-Specific Gain \rightarrow

With lookahead ...

Talk Outline

How can *MUTE* leverage lookahead?

Timing Gain \rightarrow

Signal Processing Gain \rightarrow

Application-Specific Gain \rightarrow

Non-Causal Filtering

Wideband Cancellation

Sound Source Profiling

Implementation & Evaluation

Goal: Comparable Performance

Ear Blocking Headphone

1. Bose headphone

2. *MUTE* hollow design (comfort)

8

Goal: Better Performance

MUTE (Non-Hollow)

Ear Blocking Headphone

1. Bose headphone

2. *MUTE* hollow design (comfort)

3. MUTE non-hollow design (performance)

Zooming Out

MUTE Tabletop Relay

MUTE Tabletop Relay

MUTE Tabletop Relay

Noise Cancellation as an Edge Service

Noise Cancellation as an Edge Service

MUTE Enabled Noise Sources

((•• ↓

Conclusion

Conclusion

Closing Thoughts ...

The Wearable Market Projections

WiFore: <u>https://www.nickhunn.com/wp-content/uploads/downloads/2014/08/The-Market-for-Smart-Wearables.pdf</u> <u>https://www.nickhunn.com/wp-content/uploads/downloads/2014/08/The-Market-for-Smart-Wearables.pdf</u>

Haitham Hassanieh Assistant Professor Dept. of ECE & CS

Romit Roy Choudhury Professor Dept. of ECE & CS

Sheng Shen PhD Student Dept. of ECE

Suraj Jog PhD Student Dept. of ECE

Junfeng (Jayden) Guan PhD Student Dept. of ECE

Jiaming Wang PhD Student Dept. of ECE

Yu-Lin (Wally) Wei PhD Student Dept. of ECE

Zhijian Yang PhD Student Dept. of CS

Sohrab Madani PhD Student Dept. of ECE

Jay Prakash **Visiting Student** Thanks to my excellent students and collaborators ...

Thanks to all of you

Alumni in Academia

Ashutosh Dhekne PhD 2019 Assistant Prof., CS Georgia Tech

Nirupam Roy PhD 2018 Assistant Prof., CS U Maryland, College Park

Mahanth Gowda PhD 2017 Assistant Prof., EECS Penn. State Univ.

He Wang PhD 2016 Assistant Prof., CS Purdue Univ.

Jie Xiong M.S. 2009, PhD at UCL Assistant Prof., CS UMass Amherst