
Autonomous robotic systems by
combining control and learning

Jia Pan

Department of Computer Science
University of Hong Kong

What ideal robotic systems should look like

Knowledge about
• human’s preference
• task’s manufacturing

technique and process
• physics and mechanics
• …

Data about
• Human’s motion
• Environment’s status
• Signals of failure/success
• …

Finish tasks that requires
• high accuracy but straightforward
• deep thought but low accuracy
• fast response but middle level accuracy and thought
• coordination/collaboration/cooperation
• …

Control theory
• The study of how to use past knowledge and

some data to enhance the future operation of a
dynamical system

Knowledge

Controller
ݑ = (ݔ)ݑ

Model
௧ାଵݔ = ݂ ௧ݔ ௧ݑ,

Data

Modeling

Design

Update

Tune

Interact
Collect

Reinforcement learning
• The study of how to use past data and some

knowledge to enhance the future operation of a
dynamical system

Knowledge

Controller
ݑ = (ݔ)ݑ

Model
௧ାଵݔ = ݂ ௧ݔ ௧ݑ,

Data

Modeling

Design

Learn

Optimize

Interact
Collect

But almost the same thing

Are learning scientists and control scientists
know each other well?

How are they thinking about each other?

Complains from control engineers

• 2o19-Dec-18 on Zhihu (Chinese version of quora):
1.8K likes and 294 comments

Control engineer, get control Ph.D. in US
(possibly Umich);
Worked in car hardware company
before, developed advanced control
algorithm; greatly improved
performance;
But CTO said: you know some
optimization and data scienceL

Joined autonomous driving startup
Control theory is despised there
Only POMDP, vision, and learning are
research;
Modeling and controller design are not
considered as researchL

Planning engineers also despise control
Nobody cares about control theory

Computer vision community despises
control theory even more: CV can solve
everything; arrogant; no respect to
safety and experience in control

Learning guy are parameter tuning
machine: some ideaà tune parameter
à paper

CV and planning community use ROS a
lotà stupidàMATLAB/Simulink is a
must for industry quality
Friend interviewed in Waymo: also
require C++ and Python, not Matlab

Complains from control engineers

• https://www.zhihu.com/answer/939129746

Control is the king!
Control is rigorous, with
mathematics guarantee.
Much better than learning

https://www.zhihu.com/answer/939129746

Reality

Learning scientists and control scientists don’t
know each other.

They look down upon each other

Disciplinary biases

Control theory

RL

Reinforcement
learning

Control

CE/EE/ME CS/ML/AI

Mostly discrete
Data → action

Continuous/discrete/hybrid
Model → action

Robotics tries to unify and merge their
perspectives.

Task biases
Control Reinforcement learning

Robotics covers both regions.

Criterion biases
Control

• System guarantee
• Stability
• Robustness to

perturbation
• Dynamic performance

• Overshoot
• Oscillation
• Convergence rate

• Low-level tasks

Reinforcement learning

• Intelligence
• Mimic brain decision making
• Learn skills from scratch by

self teaching
• Trade-off complex factors
• Analyze rich sensory signals

• High-level tasks

Modern robotics want both.

Pure control
• Modeling and design:

time-consuming manual
procedure; still an art

• Difficult to leverage rich
sensory data (e.g. image
or video)

• Huge gap between theory
and applications, due to
unrealistic assumptions
necessary for math
simplicity

Pure learning
• Low sample efficiency →

large training set
• Convergence and hyper-

parameter tuning: still an
art

• Low dynamic
performance

• Mostly limited in non-
industrial applications

Why bother to combine?

Reinforcement learning is limited

• Difficult to transfer from simulation to real world
• Requires huge number of training data / experience
• Discard most structural knowledge about tasks
• Limited to toy tasks:

• e.g., flexible grasping is useless without the subsequent
accurate and fast manipulation

Control policies
Raw sensor

measurements
about tasks

A gigantic
neural

network

How to combine?
• Common practice: add patches to fix problems

• Divide-and-conquer principle: control & learning
as blackbox

• Simple combination; NOT always a good solution

Original control
algorithms

Deep
learning

Reinforcement
learning

Robust control

How to combine – need deeper thinking

• Understand the core problem to be solved for
your task

• Understand reinforcement learning and control’s
capability, e.g.,

• RL: good at trade-off in complex situations
• Control: good at fast response in simple situations

• Let reinforcement learning and control work on
parts most suitable for them

• Accomplish your task requirement; no more no loss

Let examples speak out
• Autonomous navigation in dense crowds

Let examples speak out
• Deformable object manipulation

• Accurately change the shape or configuration of a
deformable object

by Navarro-Alarcon and YH Liu,
Chinese University of Hong Kong

by . D. Langsfeld, A. M. Kabir, K.
N. Kaipa, and S. K. Gupta,
Maryland Robotics Center

Autonomous navigation
in dense crowds

Many important applications
• Low-speed

autonomous driving
• Valent parking
• Package delivery

system

• Service robot
• Hotel service
• Elderly assistance
• Crowd surveillance

State of the arts

Common solutions: divide-and-conquer

• Based on the well-known solution to autonomous
deriving

• Simultaneous Localization and Mapping (SLAM)

Motion planning:
avoid collisions with
static obstacles

Build a map and
localize the robot
using SLAM

Feedback control
follows the collision-
free trajectory

Common solutions: divide-and-conquer

• Then add patches for handling moving pedestrians

Motion planning:
avoid collisions with
static obstacles

Build a map and
localize the robot
using SLAM

Feedback control
follows the collision-
free trajectory

Use vision and learning to
analyze crowds:
1. character recognition
2. trajectory estimation
3. pedestrian tracking

Avoid collisions with
pedestrians by using
techniques such as Motion
Predictive Control (MPC)

Many manual
rules to handle

corner cases

Performance: robot gets stuck

• Each component is not perfect and you need to
leave some margin for accumulated uncertainty

• But then uncertainty explosion blocks all moves

Divide-and-conquer issues (I)

Connections of perfect
components

≠
High-quality navigation
system in dense crowds

Divide-and-conquer issues (II)
• Each component may be solving a much more

difficult problem than the task

Pipeline Bottleneck requirement

Divide-
and-
conquer

1. Construct map
2. Plan trajectory in the map
3. Avoid collision with moving
objects

Accurate robot localization & map:
global knowledge about scenes

Better
solution
?

Directly solve navigation in
dense crowds

Collision avoidance: local
information is sufficient, no need for
localization or map
Moving to a goal: a rough global
localization and a rough map; no
need for map if the scene topology
is simple

Divide-and-conquer issues (III)
• Difficulty of an individual component may be due

to ignorance of interaction among components

Tracking in dense
crowds

Challenges Occlusion; Re-id

If having
perfect
dense-crowd
collision
avoidance

Always track the
people with fewer
occlusion or re-id
troubles

Localization in dense
crowds
Lost of localization or
close-loop features

Always recover lost
features by active
exploration using collision
avoidance

End-to-end RL solutions?

• Difficult to transfer from simulation to real world
• Requires huge number of training data / experience
• Discard most structural knowledge in divide-and-

conquer

Navigation
policies in

dense crowds

Raw sensor
measurements
about scenarios

A gigantic neural
network

(e.g., Graph
Neural Network)

Re-investigate our task:

What is the core capability
required in

“navigation in dense crowd”?

Let’s get some idea from human

What is human’s core skill for
navigation in dense crowds

The cooperated collision avoidance
without central guidance or communication

What is human’s core skill for
navigation in dense crowds

The cooperated collision avoidance
without central guidance or communication

Lets first solve this core task

Flexible collision
avoidance in crowds

Localization in crowds
Mapping in crowds

Crowds tracking

Trajectory
planning

Behavior cooperation

Semantic recognition

Human-like decentralized collision
avoidance

Relative velocity
of other agents

Relative position
of other agents

Robot’s steering
command

• Prefer to avoid traditional difficulties like robust
recognition and position/velocity estimation

Use raw sensor data

Network output

How to find this controller
• One way is to build a collision avoidance model

based on the first principle – velocity obstacle

• Intuitively, any velocity that can result in future
collision in a window 0, ݐ should be discarded.

How to find this controller?
• But learning is more appropriate

• Rich sensor + complex trade-off between safety and
efficiency – first principle is limited and has many
parameters to be tuned

• Rough localization is sufficient for learning-based policy

Learn controller using RL
• Neural network controller

• Optimize the entire crowd for:
• Minimizing collision cost
• Minimizing the time to reach goal
• Maximizing trajectory smoothness

encourage smooth
cooperation

Training step 1
• “Baby” controller trained on simple scenarios
• Random configuration for start and goal (yellow)

During training Training finished

Training step 2
• Controller gets “mature” after being trained on

multiple challenging scenarios

Training step 2
• Controller gets “mature” after being trained on

multiple challenging scenarios

Each robot moves
from a position on the
circle to its dual
position on the circle.

The robots behave
cooperatively to
resolve the congestion
caused by partial
observation to the
environment.

Test in a challenging benchmark

Unknown map

Traditional methods based on
collision avoidance rules

Our reinforcement learned policy

Effective navigation is possible without map,
if the topology is simple

Pure learning is NOT enough
• Learning based policy

• Make complex trade-off
between navigation safety
and efficiency

• Difficult to respond in time
and optimally for extreme
cases

• Low-level control based policy
• Aggressive optimal control when

the moving obstacles are of small-
number, distant, and slow

• Conservative safe policy when
the moving obstacles are of large
number, close, and fast

Hybrid control

Benefit of hybrid control

RL Hybrid-RL
PID control RL control Emergent control

Shorter trajectory, smaller curvature, and lower collision probability

Multi-level swarm behavior

• Close to center
• mainly safe policy

(in red)

• Close to periphery
• Mainly PID policy

(in green)

• Between center
and periphery

• Mainly RL policy
(in blue)

Performance
under different density

Real robot demo:
UWB for rough global localization

4x

Extension in 3D:
multiple drone collision avoidance

Robot has learned:

Avoid collision with moving obstacles in
a flexible way

Cooperate with moving obstacles in a
clever way

Track a target in human crowd
• Let’s first see how the robot’s performance when

only considering human as dumb moving objects

• The guider has a Ultra-Wideband (UWB) label in
his hand

• The robot tries to follow the location of the label

Indoor test

Limitation?
• Does not consider human’s preference
• The robot is overly responsible for collision

avoidance

Outdoor test

Escape from the surround

Test on a legged robot

Collision avoidance helps
challenges in other components

Flexible collision
avoidance in crowds

Localization in crowds
Mapping in crowds

Crowds tracking

Trajectory
planning

Behavior cooperation

Semantic recognition

Traditional localization in dense crowds

• Need to overcome the static feature lost difficulty

Theoretical solutions

start

goal

“No feature” “with
feature”

• Gather information by moving to regions with rich
localization features, and then continue

Chicken-and-egg difficulty

• But how to execute such “information gain”
movement in a dense crowd?

Lost localization and at most has a rough
localization from inertial odometry

Cannot navigation through crowds to the
region with “rich feature for localization”

Cannot navigation through crowds to the
region with “rich feature for localization”

Cannot recover localization

Our solution

environment

agile navigation policy

• Our collision avoidance does not rely on
localization

• Our “moving to the goal” can safely use a
rough localization to indicate where the
feature-rich region is

lost recovery policy

Chicken-and-egg problem solved

Localization recovery policy
• Choose a region in the map as a temporary goal

for observing features and recover localization
• Trade-off different regions according to:

• The distance to the robot
• The richness of features
• How difficult for the robot to pass through the crowd

flow and reach the region

robot

Closer but difficult to reach

Farther but easier to reach

Actor-Critic recovery
The crowd-related
criterion can be
computed using the
value function, a by-
product of collision
avoidance policy
training

Adaptively update
policy according to
the crowd flow status

agile navigation policy

localization recovery
policy

Simulation benchmarks
for quantitative comparison

Simulation benchmarks
for quantitative comparison

Performance
under different density

Real-world
localization recovery demo

Collision avoidance helps
challenges in other components

Flexible collision
avoidance in crowds

Localization in crowds
Mapping in crowds

Crowds tracking

Trajectory
planning

Behavior cooperation

Semantic recognition

• Traditional mapping algorithm relies on
the matching features of the same
static object at different time points

Curse of dynamic obstacles

• In crowd scenario, mapping
algorithms will be confused by
dynamic obstacles:

• Mistaking dynamics obstacles for
static obstacles

• Mistaking features of one dynamic
obstacle for features of one static
obstacle observed before

Mapping in crowds?

• Common solutions: detect moving obstacles and
remove them from sensor measurements

• But such detection is difficult to be robust

Our solution

Rather than considering moving
pedestrians as troubles for mapping

We would consider them as useful
information source for mapping

How is this possible?

Intuition
• Crowd vector field indicates the position of static

obstacles

• Even more: information about social preference
about moving directions

Mapping based on crowd flow
• The local crowd flow provides information about the

moving resistance in all directions
• As the only sensor measurements in mapping

• I.e., the robot has no knowledge about static obstacles
and only use the crowd for mapping

Mapping based on crowd flow
• Then the sensor measurements are integrated

using the occupancy-based mapping

Only possible with the navigation in crowd skill

Navigation using crowd-flow map

• Search algorithms
(like ∗ܦ) can use
the map to plan a
social-compliable
trajectory

• Then use RL-based
collision avoidance
to local adjust

Navigation using crowd-flow map

Prefer to follow human’s flow to minimize the flow disturb
Overcome the overly responsible problem

• Blue trajectory: min-
path trajectory

• Purple trajectory: D*
trajectory respecting
flow

Can we do mapping and localization
using crowd data only?

(i.e. replacing the SLAM using static objects?)

YES!
Using the crowd vector field as features

to obtain rough localization

• Green: ground truth
• Yellow: particle

localization using
crowd feature

• Red: localization using
features of static
obstacle

Put everything together

Summary of part I
• Start with collision avoidance as the core task, we

obtain much better navigation policy in dense crowds
than state-of-the-arts

• Let learning focus on complex trade-off in collision
avoidance, and use traditional control and robotics to
handle other parts.

• Further solve a set of well-known robotics challenges
• Localization recovery in crowd
• Mapping in crowd
• Localization in crowd
• Human-friendly navigation

Deformable object manipulation

Motivation
• Observed in a shoe factory in Anta
• Insole fabricated in 2 steps: assembly & sewing

Cloth piece assembly by human worker Industrial sewing of assembled result

More challenging task: bra suturing
• 2.5D shape
• Geometric interface between soft/hard materials

Simplified problem
• Autonomous robotic cloth assembly

hole pin

Still a non-trivial task
• The controller must generalize to

• Cloth pieces with different types of materials
• Cloth pieces with different numbers of holes
• Holes with different tolerance

hard fabric, 4 holes hard fabric, 2 holes soft fabric, 2 holes, large
tolerance where stretch

is necessary

Learning based controller seems to
be appropriate?

• Require complicated high-level policy

• Difficult to build mathematical model for the
complicated physical interaction between cloth
and environments

• Possible solutions:
• Reinforcement learning
• Learning from demonstration
• Or combinations

Learning from demonstration
• Operators provide demonstrations/examples

about how to achieve a task (intuitively)
• Robots learn and generalize from examples
• Examples can be provided by teleoperation,

motion capture, VR/AR, or kinesthetic teaching

demonstrations by kinesthetic
teaching

automated knot tying

LfD knot tying

Combine LfD, RL and DL
• Demonstration can include image, video, and

tactile sensing measurement

But fails on assembly task
Knot tying

Requires flexible
multi-step policy

Knot physics is
simpler, and thus
possible to generate
simulation consistent
with real world

Cloth assembly

Requires both high
accuracy and high
flexibility

Complex interaction
between cloth, fixture,
and gripper, high-quality
simulation is difficult

Simulator: Achilles’ heel for RL
• Realistic simulation of deformable objects is

extremely difficult (and also expensive)
• Even after careful optimization of physics parameters

Recap traditional control:
visual-servo control

Recap traditional control:
visual-servo control

Image space velocity

Joint space velocity

Kinematics Jacobian:
analytically computed

Visual-servo control for
deformable objects

• We can do similar thing for deformable object

Image space velocity

Joint space velocity

How the joint influences
the cloth status:

unknown,
time-varying,
material-varying

Visual-servo control for
deformable objects

• Traditional methods use linear functions to model
the ܬ matrix

• We are using nonlinear approximators, including
• Gaussian process
• Neural network

• Dynamically update the ܬ function during the
manipulation to best describe the relation
between Δݔ and Δݍ in the near future

Nonlinear visual-servo controller
using Gaussian processes

• ~ܬ ݉)ܲܩ ݔߜ ,݇ ,ݔߜ ᇱݔߜ)
• Initialize GP using random

perturbation of the cloth
piece around the initial
configuration

• Use the data collected by
the robot during the
manipulation process to
gradually update GP

Δݔ

ݍߜ

௧ߤ ݔߜ = ݉ ݔߜ + ்݇ ߜ ௧ܺ , ݔߜ
ܭ ߜ ௧ܺ , ߜ ௧ܺ + ܫଶߪ ିଵ(ݍߜ௧ −݉ ߜ ௧ܺ)

௧ଶߪ ݔߜ = ݇ ,ݔߜ ݔߜ − ்݇ ߜ ௧ܺ , ݔߜ
ܭ ߜ ௧ܺ , ߜ ௧ܺ + ܫଶߪ ିଵ݇(ߜ ௧ܺ , (ݔߜ

More general controller using deep
neural network

Besides fixture holes, we can also use raw image as controller input

Peg-in hole assembly for soft fabric:
2 holes/2 pins

Peg-in hole assembly for hard fabric:
4 holes/4 pins

Rolled towel bending:
point feedback features

Plastic sheet bending:
curve feedback features

Better performance than linear
controller

• The linear controller is also updated online
• GP controller converges faster and more robust
• Success rate >95%; >80% with human perturbation

on rolled towel task on peg-in-hole task

Neural network controller
further improves

Summary of part II
• Learning is appropriate for modeling the complex

interaction physics between deformable object
and the environment

• But the overall pipeline is still more suitable for
traditional visual-servo feedback controller due to
the required high accuracy

• Pure reinforcement learning does not fit in here

Conclusion
• Combine control and learning – always an art

1. Inspect your problem/task carefully

2. Let control or learning handle the subtasks
most appropriate for themselves

3. It usually is important to figure out which is the
core subtask and start from there

Thank you

