Automated Program Repair

Orna Grumberg
Technion, Israel

CS Research Week, National University of Singapore (NUS)
January 7, 2020

Why (formal) verification?
« safety-critical applications: Bugs are unacceptable!
* Air-traffic controllers

* Medical equipment
* Cars

* Bugs found in later stages of the development are expensive

* Hardware and software systems grow in size and complexity: Subtle
errors are hard to find by testing

Automated tools for formal verification are needed

Model Checking

* Given a system and a specification, does the system
satisfy the specification.

No+CEX Yes

Challenges in model checking

Model checking is successfully used for
automated software and hardware verification,

but more is needed:

* Scalability

* New types of systems

* New specifications (e.g. security)
* Applications in new areas

Technologies to help

Developed or adapted by the MC community
* SAT and SMT solvers

* Static analysis

* Abstraction - refinement

 Compositional verification

* Machine learning, automata learning

And many more...

Automated program repair

* Model checking finds bugs in the program
* Bug: A program run that violates the specification

*Repair tool automatically suggests repair(s)

* Repair: Changes to the program code, resulting in a
correct program

In this talk

* Exploit Model Checking technologies for
program repair

* Mutation-Based Program Repair

* Assume, Guarantee or Repair

Sound and Complete Mutation-Based
Program Repair

[Rothenberg, Grumberg]

Mutation-Based Program Repair

Sequential Assertions
program in code

ASSigl’lmentS, .

conditionals,
loops and

function calls

Assertion
violation

(Given set
of

mutations

operator
replacement
(+--),
constant
manipulation
(c—>c+1)

Can we use
these
mutations to
make all

assertions
hold?

Return
all
possible
repairs

Lo NOUTEWN R

Example

int f(int x, int y){

int z;
if (x+y>8){
Z=x+Yy,
} else {
z=9;
}

if (z=29) z=z—-1;
assert(z > 8);
return z;

x=5y=2
zZ=9
Z =8

Example

int f(int x, int y){
int z;
if (x+y>8){
Z=xtYy,
} else {
z=9;

}

O 00 N UTEWN R

if (z=29) z=2z+1;

assert(z > 8);
return z;

(7

Mutation list:
Replace + with —
Replace — with +
Replace > with =

Replace = with > Note:

Repairs
are

Repair list: minimal
option 1:

line 7: replace = with >
option 2:

line 7:replace — with +

Example

int f(int x, int y){ Mutation list:
int z; Replace + with —
if x+y>9){ Replace — with +
z=x+Yy; Replace > with >
} else { Replace = with >

At this z = 10; Increase constants by 1

}
if (z=29) z=z-1,;

assert(z > 8); ﬂ]

return z;

point z
> 10

O 00 NSO e WN R

WooNOULAEWDNE

int f(int x, int y){
int z;
if (x+y>8){

z=x+Yy,

} else {

z=09;
}
if (z=9) z=z—-1;
assert(z > 8);
return z;

Input:

a buggy
program

Overview of our approach

(
AN

\\ \

fg\‘l‘J

Translation Mutation Repair

»

line 7: replace operator = with >
line 7: replace operator — with +

Output:
All minimal repairs,
sorted by size

Finding all cosaEcdf @olgraomstraint sets
from a finite set of poogtamst sets

13

First step - Translation

Goal: Translate the program into a set of constraints which is
satisfiable iff the program has a bug
(i.e. there exists an input for which an assertion fails)

Work by Clarke,Kroening Lerda (TACAS 2004
(CBMC) Correctness
. Simplification 1s bounded

 Unwinding of loops
* a bounded number of unwinding
» Conversion to SSA

LN WNRE

First step - Translation

int f(int x, int y){

int z;
if x+y>8){
Z=Xx+tYy,
} else {
z=09;
}

if(z=9) z=z—1;
assert(z > 8);
return z;

» »

{g91=x1+ty1>8,

Zy = X1+ Y1

Z3=9,

Zy = g1? 23 Z3,
b1 =Z429,
Zs = Z4 — 1,

OO NOULAEWNRE

First step - Translation

int f(int x, int y){

int z;
if x+y>8){
z=Xx+tY,
} else {
z=09;
}

if(z=9) z=z—1;
assert(z > 8);
return z;

» »

{g1=x1+y,>8,

Z; =Xx1t+Y1,

Z3 = 9,

Zy = g1? 23 Z3,
b1 = Zy => 9)
Zs = Z4 — 1,
Zg = bl?Z5:Z4,
Zg <8

CHXS Ok Lo

First step - Translation

int f(int x, int y){

int z;
if (x+y>8){
Z=x+tY,
} else{
Zz=09:
}

if(z=29) z=z—1;
assert(z > 8);
return z;

& »

{ g1=x1+y; >8,
Zy = X1+ Y1,

Z3=9,

Zy = g1?Z3: Z3,
by =2z,2>29,
Zs = Z4 — 1,

00 < w

First step - Translation

int f(int x, int y){

int z;
a8
Ty
etsed
Y
}

assert(z > 8);
return z

-&-

{g1=x1+y>8,
Z2 = X1+ Y1

z3 =9,

Zy =91?Z2:Z3,
DT n=r
T

Zg = b17 251 7y,
Zg = 8

Translation

* In the translation, loops are unwound a bounded number of
Times

* Important observation: correctness is bounded.

That is, repairs found by our method only guarantee that

assertions cannot be violated by inputs going through the
loop at most k times

N

7

T, |

NouhkwnNeE

}

Mutation list:

Second step - Mutation s

int f(int x, int y){

int z;
if x+y>8){
Z=X -Y;
} else {
Z=09;
}
if (z=9){
z=2z—1;

assert(z > 8);
return z;

Replace — with +
Replace > with >
Replace = with >

g1 =Xx1+y; >38
{ Zyzm %24y Z2 = X1 — Y1}

{z3 =9}
Zy = g1? Zy: Z3
{b =24=>9,by =2z, > 9}
{ 2s =24—1,25 = 74 + 1}
Zg = b1? 25124
Zeg < 8

20

Third step - Repair

{z, =x1+ V1, Zo=Xx1{ — Y1}

{z3 =9}
Zy = g1? Zy: Z3
{b1 =24=29,b; =24 > 9}
{ zs =2, — 1,25 = 7, + 1}
Ze = b1?2Z5:24
8. assert(z > 8); Zg < 8
9. return z;

21

Third step - Repair

SAT solver:

Checks satisfiability of a propositional formula

. If it is satisfiable - returns a satisfying assignment
Generates mutated programs of increasing size

SMT solver:

Checks satisfiability of a first-order formula over theory
(e.g., linear arithmetic)

. If it is satisfiable - returns a satisfying assignment
Checks (bounded) correctness of the mutated programs

1 C2
{g1=x1+y1>8,91=x1—y1 > 8,

C3
Ca Cg
{Z2 =%+ Y1, 2= X1 — Y1}
Ce
{z3 =9}
Cs Cg

{b1=Z429,b1=Z4>9}

Co C10
{ zs =24,— 1,25 = 74 + 1}

Repair

SAT solver

SMT solver

Repair

SAT solver

SMT solver

SAT
c1 =0
c, =1
C3 =
Cy =
C5=O
Ce =

C; =
Cg =
Cg =

€10 =0

24

SMT solver

SAT
c1 =0
c, =1
C3 =
Cy =
C5=0
Ce =

C; =
Cg =
Cg =

€10 =0

25

C1

- SA
ﬂ T
+ 8 »
>
V1
X1
{01

0
Cl == .
Cr, =
C3 =
C4_ == O
Cs =
Ce =
:= a} C7 ==
Cg =
Co =_ 0
Ci0 =
8}
+ Vv =
X1
91 _
Z
Cyq
{z2=x 1y
.
Co |
e =

26

Repair

Cq Cy SAT solver

Cy
{Bi=2a =9, b1 =2,>9}

C10

{éﬁ% =74 + 1}

Repair

o) Cy SAT solver

Blocking clause for "similar” assignments

* Assignments causing a similar bug

C10

(== s - 5+ 1)

Repair

SAT solver

SMT solver

Repair

SAT solver

SAT solver

Blocking clause for this assignment

and all other supersets of changes

* Repairs that are not minimal

SAT

UNSAT

SAT

34

Cq

p SAT
Cy
&=t 2= x -
UNSAT
{z: =9}
C7
{hh=2z,29 1 =2>9)

Making repair more efficient

Repair traverses the search space of all mutated programs
* running iterations of Generate - Validate

Goal: reducing the search space

1. When a correct mutated program is generated (Validate succeeds)
« Eliminating non-minimal correct mutated programs

2. When a buggy mutated program is generated (Validate fails)
* Eliminate "similar” buggy mutated programs

Correct mutated program

Successful repair:
A set of mutations M that results in a (bounded) correct

program

Eliminate non-minimal repairs:
Any superset of M is not minimal

« Add a blocking clause to the SAT solver that disallows to
choose any superset of M

Buggy mutated program

Unsuccessful repair:
A set of mutations M that results in a buggy program

Elimination:
* Find a small explanation S for the bug
« S is a set of statements in the code

* Disallow any mutated program, containing S

Fault localization

Fault localization: A (small) explanation S to a bug

In other works:

* May explanation

* Changes to statements from S may result in a repaired
program

Fault localization

Fault localization: A (small) explanation S to a bug

In our work:

* Must explanation

* If none of the statements in S is changed, then
* regardless of changes applied to other statement
« the same bug will remain

« = S must be changed

Reducing the search space

For a must fault localization S:
* Remove from the search space all programs containing S
« If S is small, more programs will be removed

0

o 01 h WN N

Fault localization: example

int f(int x, int y){
int z;
Z=X
if x>=0){
x=x+1Ly=x+2;
} else{
z=9;
}
assert(z > 0);
return z;

Fault localization: example

int f(int x, int y){ erroneous run:
1. int z; int t; x=0, y=0
2. Z=X z=0
3 if x>=0){
4. x=x+1y=x+2; x=1, y=2
5 } else {
6 z =9,

}

7. assert(z > 0); z=0
8. return z;

}

Repair: line 3 should change to (x > 0)

~

O 0 AE WN KN

Fault localization by slicing

int f(int x, int y){ execution dynamic
int z; int t; slice slice
Z =X o o
if (x>=0){ o
x=x+1,y=0; o
} else {
z =09,
}
assert(z > 0); o o
return z;

our
slice

Theorem:

Our algorithm is sound and complete

That is, for a given bound b:

A program is returned by our algorithm
iff

it is minimal and b-bounded correct
 Minimal number of changes

« Every assertion reachable along a computation of bounded length b is
correct

Our method

Ver.

Method of [11]

Method of [12]

Mutation level 1

Mutation level 2

Fixed?

Time(s]

Fixed?

Time|s]

Fixed?

Time|s]

Fixed?

Time|s]

Level 1

Op. replacement

Arithmetic

Relational

Logical

{+v _}7 {*: /7 %}

{I],&&}

{<, <=}

Bit-wise

{>>, <<} &7}

Constant manipulation

= 1 | 11 1] 1]/

FORENSIC.

L L =]]])]

28 + 34 35 + 93.678
31 + 1.246 + 4.661
32 + 1.902 + 85.349
35 + 41 46 + 92.866
36 + 8 6 + 94.599
39 + 82 101 + 2.558 + 16.393
AN | e Roa)
16 (39%) || 38 15 (36.6%) || 38 11 (26.83%) | 2.278 |[18 (43.9%)|| 48.151

Adding fault localization

Every generate-validate iteration with fault
localization is more expensive

« But we expect to have less iterations

Both AllRepair and FL-AllRepair are complete
* return the same set of repaired programs
* Not necessarily in the same order

(a) Fast repairs (< 5s)
| |
=

—8— AR

10| —@— rFrAR

(b) Medium repairs (5 — 240s)

1

—8$— Al
—m— FLAR

I I

3.600
3.000
2,400
1.800
1,200

600

(c) Slow repairs (> 240s)

: T
—8— AR

Summary

Mutation-based automated repair can assist a programmer in
debugging in initial stages of development

* When bugs are simple, but many

* It also can help beginner programmers
* Educational tool for students

* Analysis can be used to prioritize the returned repaired
programs

Assume, Guarantee or Repair

[Frenkel, Grumberg, Pasareanu, Sheinvald]

Motivation

*Find bugs in a large system
* Model checking of large systems may not scale

 Compositional model checking verifies small components and
conclude the correctness of the full system

If a vulnerability is found, repair is applied to one of the
components

Communicating systems

« C-like programs
* Described as a control-flow graph (automaton)
« Use automata learning algorithms

return(pass2) M,

- while (true) —
pass = readlnput;
while (pass < 999)
pass = readlnput; pass < 999
pass2 = encrypt(pass);
return pass?2;

read(pass) enc(pass)

999 < pr;.:,s_-

O, WNEPE

read(pass)

Example

« Components synchronize over common channels

return(pass2) M,

Example

« Components synchronize over common channels

return(pass2) M,

Example

« Components synchronize over common channels

Example

« Components synchronize over common channels

return(pass2) M,

Example

« Components synchronize over common channels

Example

« Components synchronize over common channels

return(pass2) M,

Example

« Components synchronize over common channels

return(pass2) M,

Specifications

« Safety requirements - given as an automaton

* Behavior of the program through time

* "the entered password is different from the encrypted password"”
* “there is no overflow"

read(pass)

return(pass2)
— o ——

read(pass)

read(pass) pass # pass2

ra)
. 664

Compositional Verification

- Inpufts:

- composite system M, || M,
- property P

+ Goal: check if M;||M, =P

Useful AG Rule

1. check if a component M; guarantees P when it is a part of
a system satisfying assumption A

|=P:>

Al M =P

M, || M, =P

63

Useful AG Rule for Safety Properties

. check if a component M; guarantees P when it is a part of a
system satisfying assumption A

. show that the other component M, (the environment) satisfies
A.

M, =A
M, '=P‘ MMz =P

Assume Guarantee or Repair

counterexample - strengthen assumption

Learning

Model Checking

1A M, =P [Jfalse
true
— true P holds

2 Mo = A in M, M,

false

cex ¢ L(A)

N Y_ P violated
counterexample - weaken assumption\error? in M;|IM,

cex||

1 |#P ?

—> Repair M,

65

Semantic repair

» The counterexample contains constraint

» Goal:

to make the counterexample infeasible by adding another
constraint C to it

- Using abduction

Semantic repair

learn a constraint € such that:
C Apass > 999 A pass2 = pass - 2 - pass2 < 2%
C is over the input variables of M, : pass

C := Vpass2 [pass > 999 A pass2 = pass - 2 - pass2 < 2°%]
After quantifier elimination & simplification: € = pass < 293,

-
Abduction- chja' cok No«gic

O WNEPER

Semantic Repair

- while (true)

pass = readlnput;

whille (pass < 999 or pass>2%)
pass = readlnput;

pass2 = encrypt(pass);

return pass?2;

read(pass)

pass < 999

read(pass)

pass > 999

return(pass2)

enc(pass)

Syntactic repair

 The counterexample t contains no constraint
It consists of communication actions and assignments

 Abduction will not help

3 methods to removing counterexample t:
« Exact: remove exactly t from M,

* Approximate:

* Aggressive:

Example - Syntactic Repair

No self loop, cannot read more
than once each time!

return(pass2)

read(pass)

read(pass) pass # pass2

read(pass)

enc(pass) pass =

return(pass)
return(pass?2)

CANO

999 < pass

U

=7
read(pass)

Multiple reads are allowed

(pass) - 2

LENC p(l% 5

Agressive Repair

* Remove accepting states (can make the language of M,
empty)

return(pass2)

return(pass2)

Q""’ Q’:‘;

§

m—> read(pass) |

enc(pass)

/(;5
999 < ¢ pusa j\

read(pass)

enc(pass)

/{;‘j
999 < g puss J;\

read(pass)

read(pass) |

e

q q

—
J

C
C

Approximate Repair

« Add an intermidiate state to eliminate bad traces

rfﬁrrn(pn%Z)
return(pass2) /_.—Y*‘ T~ \
T —{[o) {4
\Q . 2y
— read(pass) | ‘I %—\\ ‘ enc(pass)

read(pass) | enc(pass) \K//’\/ /
- o P
999 < ¢ puss G pass > 000

_/ read(pass)

read(pass)

2
=

Exact Rapair

« Remove bad traces one by one
* First bad ftrace spotted is read(pass), read(pass)

return(pass?)

= 7
—Hi///%}'y f‘\\'
return(vas 2} \\7_,,//’ \‘"'{
rﬁuu.rn,g{ss ,.r_m;(m_‘,.,,.]; |encpass)
R = - X
' —p N N
qs i,’/fh \'I‘ | gz)
\ ,,%‘""//IH__@F)T_M;__*\U-/ / cad(pass) /7 /
O N0-——0=_rO%0
|

T read(pass) &-_J/ \ / >_%

jenc(p(zss) O
(e
999 < ¢ pus J“\

read(pass)

read(pass)

q

—
J

(

AGR Results on Various Examples

|Example| M Size| M> Size| P Size| Time (sec.)| A size| Repair Size |Repair Method|#Iterations|

#4 64 64 3 95 7 verification
0.106 5 27 aggress. 2
#6 2 27 2 0.126 6 28 approx. 2
0.132 8 81 exact 2
0.13 6 81 aggress. 2
#7 2 81 2 0.138 Fi 82 approx. 2
0.165 9 243 exact 2
0.15 8 243 aggress. 2
#8 2 243 2 0.17 8 244 approx. 2
0.223 10 729 exact 2
#11 3 256 6 4.88 92 verification
#14 5 256 6 4.44 109 verification
0.69 12 16 aggress. 5
#15 3 16 5 0.28 13 18 approx. 3
4.27 aS 864 exact 5
6.63 113 256 aggress. 2
#16 4 256 8 5.94 113 257 approx. 2
12.87 155 1280 exact 2
1.07 18 18 aggress. 3
#19 3 16 5 1.12 18 18 approx. 3
1.26 18 18 exact 3
0.09 1 4 (trivial) aggress. -
#22 2 4 2 0.21 6 8 approx. 5
timeout exact timeout

Compar'ing Repair Methods (logarithmic scale)

10* aggress E S 103 repair size
i'§ approx. 1@ Z 4 assumption size
BN exact { e B
@ i 41 B) 1
107 | '
% 10° | 3 § g /
E f 12 |
= _ [7
: R vy
= = 2 7 7 7 jp——
107 ? 1E8 | ﬁ E TR R
#1 #8 #15 #16 #18 #19 #22 #5 #6 #7 #8 #15 #16 #18 #19 #22

#15, #16, #18, #19 apply also abduction

Summary

» Learning-based Assume guarantee algorithm for infinite-
state communicating programs

* Incremental automata learning algorithm
- Semantic and syntactic repair

* Experiments provide proof of concept

Thank you

