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Talk Outline

@ Compressed sensing

@ Using generative models for compressed sensing

@ Learning generative models from noisy data
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Compressed Sensing

o Want to recover a signal (e.g., an image) from noisy measurements.
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o Linear measurements: see y = Ax, for A € R™*",

o How many measurements m to learn the signal?
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» Naively: m > n or else underdetermined: multiple x possible.
» But most x aren't plausible.
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Compressed Sensing

o Given linear measurements y = Ax, for A € R™*",
o How many measurements m to learn the signal x?

» Naively: m > n or else underdetermined: multiple x possible.
» But most x aren’t plausible.

5MB 36MB

» This is why compression is possible.
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Compressed Sensing

o Given linear measurements y = Ax, for A € R™*",
o How many measurements m to learn the signal x?

» Naively: m > n or else underdetermined: multiple x possible.
» But most x aren’t plausible.

5MB 36MB
» This is why compression is possible.

o ldeal answer:

(information in image)

~

(new info. per measurement)

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models

5/ 41



Compressed Sensing

o Given linear measurements y = Ax, for A € R™*",
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(new info. per measurement)
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Compressed Sensing

o Given linear measurements y = Ax, for A € R™*",

o How many measurements m to learn the signal x?

(information in image)

(new info. per measurement)

o Image “compressible” = information in image is small.
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Compressed Sensing

©

Given linear measurements y = Ax, for A € R™*",

o How many measurements m to learn the signal x?

(information in image)

(new info. per measurement)

o Image “compressible” = information in image is small.

Measurements “incoherent” = most info new.

©
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Compressed Sensing

o Want to estimate x € R” from m < n linear measurements.
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Compressed Sensing

o Want to estimate x € R" from m < n linear measurements.

o Suggestion: the “most compressible” image that fits measurements.
o How should we formalize that an image is “compressible”?
o Short JPEG compression
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Compressed Sensing

o Want to estimate x € R” from m < n linear measurements.

o Suggestion: the “most compressible” image that fits measurements.
o How should we formalize that an image is “compressible”?

~ Short JPEG compression

> Intractible to compute.
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Compressed Sensing

o Want to estimate x € R" from m < n linear measurements.

©

Suggestion: the “most compressible” image that fits measurements.

©

How should we formalize that an image is “compressible” ?
Short-JPEG-compression

> Intractible to compute.

©

o Standard compressed sensing: sparsity in some basis
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Approximate sparsity is common

Coefficient decay (log log plot)
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Sample complexity of sparse recovery

(information in image)

m=

(new info. per measurement)
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Sample complexity of sparse recovery

(information in image)

m = _
(new info. per measurement)

o I1f 99% of energy in largest k coordinates...
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Sample complexity of sparse recovery

(information in image)

m = _
(new info. per measurement)

o I1f 99% of energy in largest k coordinates...

o Information in image is ~ log (}) ~ klogn
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Sample complexity of sparse recovery

(information in image)

m=

(new info. per measurement)

o I1f 99% of energy in largest k coordinates...
o Information in image is ~ log (}) ~ klogn

o New info. per measurement is hopefully =~ log 100 = ©(1)
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Compressed Sensing Formalism

“Compressible” = “sparse”

o Want to estimate x from y = Ax +n, for A € R™*".
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» For this talk: ignore 1, so y = Ax.
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Compressed Sensing Formalism

“Compressible” = “sparse”

o Want to estimate x from y = Ax +n, for A € R™*".
» For this talk: ignore 1, so y = Ax.

o Goal: X with

Ix— %2 < O(1) - min fix— x|l (1)

k-sparse x’

with high probability.
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» For this talk: ignore 7, so y = Ax.

o Goal: X with

Ix=X2 < O(1)- min [jx — x> (1)

k-sparse x’

with high probability.
» Reconstruction accuracy proportional to model accuracy.

o Theorem [Candés-Romberg-Tao 2006]
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Compressed Sensing Formalism

“Compressible” = “sparse”

o Want to estimate x from y = Ax +n, for A € R™*".
» For this talk: ignore 7, so y = Ax.

o Goal: X with
Ix =Xl < O(1) - min _|lx—x|l2 (1)
k-sparse x’
with high probability.
» Reconstruction accuracy proportional to model accuracy.

o Theorem [Candés-Romberg-Tao 2006]
» m = O(klog(n/k)) suffices for (1).
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Compressed Sensing Formalism

“Compressible” = “sparse”

o Want to estimate x from y = Ax +n, for A € R™*".
» For this talk: ignore 7, so y = Ax.

o Goal: X with
Ix = X2 < O(1) - min _[Ix —x||2 (1)
k-sparse x’
with high probability.
» Reconstruction accuracy proportional to model accuracy.
o Theorem [Candés-Romberg-Tao 2006]

» m = O(klog(n/k)) suffices for (1).
» Such an X can be found efficiently with, e.g., the LASSO.
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Lower bound: k=1

o Hard case: x is random e; plus Gaussian noise w with ||w|2 ~ 1.

o Robust recovery must locate i.

o Observations (v, x) = v; + (v,w) = v; + %z, for z ~ N(0,1).
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))
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1-sparse lower bound
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o Observe (v,x) = v; + %z, where z ~ N(0,09(1))
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))

V2
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))

v3
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))

v3 Vi V2
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1-sparse lower bound
P-Woodruff '11

o Observe (v,x) = v; + %z, where z ~ N(0,09(1))
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))

PRRKS
“o‘:‘:‘o
X%

o Shannon 1948: AWGN channel capacity is
1
(i, {v,x)) < 5 log(1 + SNR)

where SNR denotes the “signal-to-noise ratio,”
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))

0‘0‘0‘0

o Shannon 1948: AWGN channel capacity is
1
I(i,{v,x)) < = Iog(l + SNR)
where SNR denotes the S|gna|—to—noise ratio,”

E[signal’] _ E[v?]

Enoise”] ~ TvIB/n
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1-sparse lower bound
P-Woodruff '11
o Observe (v,x) = v; + %z, where z ~ N(0,09(1))

0‘0‘0‘0

o Shannon 1948: AWGN channel capacity is
1
I(i,{v,x)) < = Iog(l + SNR)
where SNR denotes the S|gna|—to—noise ratio,”

E[signal’] _ E[v?]

Enoise”] ~ TvIB/n
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1-sparse lower bound
P-Woodruff '11
o Observe (v, x) = v; + I

W) \\

V”22 where z ~ N(0,0(1))

o Shannon 1948: AWGN channel capacity is
1
I(i,{v,x)) < = Iog(l + SNR)

where SNR denotes the S|gna|—to—noise ratio,”
E[signal’] _ E[v?]

[noise”]  [[v]l3/n
o (info. per measurement) = O(1)
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Lower bound
P-Woodruff '11

(information in image)

(new info. per measurement)

o (info. per measurement) = O(1)
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Lower bound
P-Woodruff '11

(information in image)

(new info. per measurement)

o (info. per measurement) = O(1)

o k=1: (information in image) = logn = m = Q(log n)
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Lower bound
P-Woodruff '11

(information in image)

(new info. per measurement)

o (info. per measurement) = O(1)

o k=1: (information in image) = logn = m = Q(log n)

o General k: m = Q(log (7)) = Q(k log(n/k)).

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 13 / 41



Talk Outline

@ Using generative models for compressed sensing
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Alternatives to sparsity?

(information in image)

(new info. per measurement)
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o MRI images are sparse in the wavelet basis.

o Worldwide, 100 million MRIs taken per year.
o Want a data-driven model.
» Better structural understanding should give fewer measurements.
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Alternatives to sparsity?
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(new info. per measurement)

©

MRI images are sparse in the wavelet basis.

Worldwide, 100 million MRIs taken per year.
Want a data-driven model.

©
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» Better structural understanding should give fewer measurements.

©

Best way to model images in 20197
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Want a data-driven model.
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» Better structural understanding should give fewer measurements.
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Best way to model images in 20197
» Deep convolutional neural networks.
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Alternatives to sparsity?

(information in image)

~

(new info. per measurement)

©

MRI images are sparse in the wavelet basis.

Worldwide, 100 million MRIs taken per year.
Want a data-driven model.

©

(]

» Better structural understanding should give fewer measurements.

©

Best way to model images in 20197

» Deep convolutional neural networks.
> In particular: generative models.
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Generative Models

Random
noise z
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Generative Models

Random

. —| |—| —| [— Image
noise z
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Training Generative Models

Random
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Training Generative Models

1

Random
. — k|l— —| |—n
noise z |
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Generative Models

o Want to model a distribution D of images.
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Generative Models

o Want to model a distribution D of images.
o Function G : Rk — R",
o When z ~ N(0, lx), then ideally G(z) ~ D.
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Generative Models

o Want to model a distribution D of images.

Function G : Rk — R”.

When z ~ N(0, Ix), then ideally G(z) ~ D.

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:

©

(+]

©
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Generative Models

o Want to model a distribution D of images.

o Function G : R¥ — R".

o When z ~ N(0, lx), then ideally G(z) ~ D.

o Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:

Faces

Karras et al., 2018
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Generative Models

o Want to model a distribution D of images.

Function G : Rk — R”.

When z ~ N(0, Ix), then ideally G(z) ~ D.

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:
Faces Astronomy

©

(+]

©

Karras et al., 2018 Schawinski et al., 2017
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Generative Models

o Want to model a distribution D of images.

Function G : Rk — R”.

When z ~ N(0, Ix), then ideally G(z) ~ D.

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:

Faces Astronomy Particle Physics
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Generative Models

o Want to model a distribution D of images.

Function G : Rk — R”.

When z ~ N(0, Ix), then ideally G(z) ~ D.

Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:

Faces Astronomy Particle Physics
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Karras et al., 2018 Schawinski et al., 2017  Paganini et al., 2017
o Variational Auto-Encoders (VAEs) [Kingma & Welling 2013].
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Generative Models

o Want to model a distribution D of images.

o Function G : R¥ — R".

o When z ~ N(0, lx), then ideally G(z) ~ D.

o Generative Adversarial Networks (GANs) [Goodfellow et al. 2014]:

Suggestion for compressed sensing J

Replace “x is k-sparse” by “x is in range of G : Rk — R"".

o Variational Auto-Encoders (VAEs) [Kingma & Welling 2013].
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Our Results

“Compressible” = “near range(G)"

o Want to estimate x from y = Ax, for A € R™*".
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o Want to estimate x from y = Ax, for A € R™*",

o Goal: X with

Ix =Xll2 < O(1) - min _x—x]
x'e€range(G)

o Main Theorem |: m = O(kd log n) suffices for (2).
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o Want to estimate x from y = Ax, for A € R™*",

o Goal: X with

Ix =Xll2 < O(1) - min _x—x] ()
x'e€range(G)

o Main Theorem |: m = O(kd log n) suffices for (2).

» G is a d-layer ReLU-based neural network.
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o Main Theorem |: m = O(kd log n) suffices for (2).

» G is a d-layer ReLU-based neural network.
» When A is random Gaussian matrix.

o Main Theorem II:
» For any Lipschitz G, m = O(k log ’O—L) suffices.
» Morally the same O(kd log n) bound.
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Our Results (II)
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o m = O(kd log n) suffices for d-layer G.
» Compared to O(klog n) for sparsity-based methods.
> k here can be much smaller

o Find X = G(Z) by gradient descent on ||y — AG(Z)|2-
» Just like for training, no proof this converges

» Approximate solution approximately gives (3)
» Can check that ||X — x||2 is small.
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“Compressible” = “near range(G)”

o Want to estimate x from y = Ax, for A € R™*",

o Goal: X with

Ix—%l2 < 01)-  min _|x—xh (3)
x'€range(G)

o m = O(kd log n) suffices for d-layer G.
» Compared to O(klog n) for sparsity-based methods.
> k here can be much smaller
o Find X = G(Z) by gradient descent on ||y — AG(Z)|2-
Just like for training, no proof this converges
Approximate solution approximately gives (3)

Can check that ||X — x|| is small.
In practice, optimization error seems negligible.
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o Projections on manifolds (Baraniuk-Wakin '09, Eftekhari-Wakin '15)
» Conditions on manifold for which recovery is possible.

o Deep network models (Mousavi-Dasarathy-Baraniuk '17, Chang et al
'17)

» Train deep network to encode and/or decode.

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 20 / 41



Experimental Results

Faces: n =64 x 64 x 3 = 12288, m = 500

©
£
o
—
o

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin)

Compressed Sensing and Generative Models

21/ 41



Experimental Results

Faces: n =64 x 64 x 3 = 12288, m = 500

Original

20
‘UD
o2

Lasso
(Wavelet)

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 21 /41



Experimental Results

Faces: n =64 x 64 x 3 = 12288, m = 500

Original

Lasso
(DCT)

»
.

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 21 /41

Lasso
(Wavelet)

DCGAN




Experimental Results
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Proof Outline (ReLU-based networks)

o Show range(G) lies within union of n® k-dimensional hyperplane.
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» Then analogous to proof for sparsity: (Z) < 2klog(n/k) hyperplanes.
» So dklog n Gaussian measurements suffice.

o RelLU-based network:
» Each layer is z — ReLU(A;z).

. . >
» ReLU(y); :{ )(’)f yi=0

otherwise
o Input to layer 1: single k-dimensional hyperplane.

Layer 1's output lies within a union of nk k-dimensional hyperplanes.

Lemma J

o Induction: final output lies within n® k-dimensional hyperplanes.
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Proof of Lemma

Layer 1's output lies within a union of n* k-dimensional hyperplanes.

o z is k-dimensional.
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Proof of Lemma
Layer 1's output lies within a union of n* k-dimensional hyperplanes.
o z is k-dimensional.
o ReLU(A;z) is linear, within any constant region of sign(A;z).
o How many different patterns can sign(A;z) take?
o k = 2 version: how many regions

can n lines partition plane into?

s 14 (1424 ... 4 n) = ZEni2
» n half-spaces divide R¥ into less than n* regions. |
o Therefore d-layer network has n? regions.
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Summary of Compressed Sensing with Generative Models

(information in image)

(new info. per measurement)
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(information in image)

(new info. per measurement)

o Generative models can bound information content as O(kd log n).
o Generative models differentiable = can optimize in practice.

o Gaussian measurements ensure independent information.
» O(1) approximation factor < O(1) SNR
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Summary of Compressed Sensing with Generative Models

(information in image)

(new info. per measurement)

o Generative models can bound information content as O(kd log n).
o Generative models differentiable = can optimize in practice.

o Gaussian measurements ensure independent information.
» O(1) approximation factor «< O(1) SNR <= O(1) bits each
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Follow-up work

Theorem

For any L-Lipschitz G : RK — R", recoving X from Ax satisfying

x — Xl < O(1) - min x—X'|a+6
| 2 < O(1) X,:G(z,)’”z,”ﬁrll 12

requires m = O(k log ‘F) linear measurements.
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requires m = O(k log ‘F) linear measurements.

o Matching lower bounds: [Liu-Scarlett] (Poster outside!) and
[Kamath-Karmalkar-P]
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Follow-up work

Theorem

For any L-Lipschitz G : RK — R", recoving X from Ax satisfying

Ix —X|l2 < O(1) - min Ix = x|l + 6
x'=G(2') |12’ [l2<r

requires m = O(k log %L) linear measurements.

o Matching lower bounds: [Liu-Scarlett] (Poster outside!) and
[Kamath-Karmalkar-P]

o Better results with better G: (Asim-Ahmed-Hand '19)

o Provably fast for random networks (Hand-Voroninski '18)
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Extensions
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Extensions

o Inpainting:

» A is diagonal, zeros and ones.
o Deblurring:

o Can apply even to nonlinear—but differentiable—measurements.
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Talk Outline

@ Learning generative models from noisy data

Ashish Bora, Ajil Jalal, Eric Price, Alex Dimakis (UT Austin) Compressed Sensing and Generative Models 28 / 41



Where does the generative model come from?
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Where does the generative model come from?

Training from lots of data.

Problem J

If measuring images is hard/noisy, how do you collect a good data set?

Question J

Can we learn a GAN from incomplete, noisy measurements?
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GAN Architecture
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GAN Architecture

Generated image

A § iy

Real?

Real image

o Generator G wants to fool the discriminator D.

o If G, D infinitely powerful: only pure Nash equilibrium when G(Z2)
equals true distribution.

o Empirically works for G, D being convolutional neural nets.
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AmbientGAN training

Simulated

Generated image  measurement

45

Real measurement

Real?

o Discriminator must distinguish real measurements from simulated
measurements of fake images

o Can try this for any measurement process f you understand.
o Compatible with any GAN generator architecture.
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Measurement: Gaussian blur + Gaussian noise
Measured

o Gaussian blur + additive Gaussian noise attenuates high-frequency
components.
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Measurement: Obscured Square

Measured Inpainting Baseline AmbientGAN

Obscure a random square containing 25% of the image.
Inpainting followed by GAN training reproduces inpainting artifacts.
AmbientGAN gives much smaller artifacts.

© © o o

No theorem: doesn't know that eyes should have the same color.
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Measurement: Limited View

o Motivation: learn the distribution of panoramas from the distribution
of photos?
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Measurement: Limited View

o Motivation: learn the distribution of panoramas from the distribution
of photos?

Measured AmbientGAN

o Reveal a random square containing 25% of the image.

o AmbientGAN still recovers faces.
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Measurement: Dropout

Measured

o Drop each pixel independently with probability p = 95%.
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© © o o

Theorem: in the limit of dataset size and G, D capacity — oo, Nash
equilibrium of AmbientGAN is the true distribution.
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1D Projections

o So far, measurements have all looked like images themselves.
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Robustness to model mismatch

o We assume we know the true measurement process.
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Robustness to model mismatch

o We assume we know the true measurement process.
o What happens if we get it wrong?
o On MNIST:

Robustness, p* = 0.5

Inception score

=

|| =—e AmbientGAN (ours) |

%0 01 02z 03 02 05 06 07 08 09
Block probability (p)
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Compressed sensing

o Compressed sensing: learn an image x from low-dimensional linear
projection Ax.
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Compressed sensing

o Compressed sensing: learn an image x from low-dimensional linear
projection Ax.

o AmbientGAN can learn the generative model from a dataset of
projections {(A;, Aix;)}.
o Beats standard sparse recovery (e.g. Lasso).
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o Theorem about unique Nash equilibrium in the limit.
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AmbientGAN
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Real measurement

o Plug the measurement process into the GAN
architecture of your choice.
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AmbientGAN

Simulated
Generated image =~ measurement

Z
b 4
o Plug the measurement process into the GAN

architecture of your choice.

o The generator learns the pre-measurement ground
truth better than if you denoise before training.

o Could let us learn distributions we have no data for.
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AmbientGAN

Simulated
Generated image =~ measurement

-

Real measurement

o Plug the measurement process into the GAN
architecture of your choice.

The generator learns the pre-measurement ground
truth better than if you denoise before training.

©

Could let us learn distributions we have no data for.

©

Read the paper (“AmbientGAN") for lots more experiments.

©
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Conclusion and open questions

o Main results:

» Can use lossy measurements to learn a generative model.
» Can use a generative model to reconstruct from lossy measurements.
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Main results:
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» Can use lossy measurements to learn a generative model.
» Can use a generative model to reconstruct from lossy measurements.
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Finite-sample theorems for learning the generative model?
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Better measure than Lipschitzness of generative model complexity?

o More uses of differentiable compression?
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Conclusion and open questions

Main results:

©

» Can use lossy measurements to learn a generative model.
» Can use a generative model to reconstruct from lossy measurements.

©

Finite-sample theorems for learning the generative model?

©

Better measure than Lipschitzness of generative model complexity?

o More uses of differentiable compression?

Thank You
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