
Byzantine agreement

Valerie King
University of Victoria

Victoria, Canada

in the Clear

Byzantine Agreement

1

1 0

0

Start with initial bits; exchanges messages,
then output same bit. If all start with the
same bit, must output that bit

Byzantine Agreement

To model worst case faults in processors
which communicate via point-to-point links and
worst case delays in message delivery

Today: Need for decentralized
agreement over the internet with

untrusted players
Distributed ledger:
• Digital currency
• Smart contracts

Goal of this talk

agreement

Decentralized ledger

tools

Byzantine adversary

n nodes
t <n/3 bad
behave
arbitrarily
Worst case input

Asynchronous Communication

Adversary schedules message delivery, no
global clock, no known delay bounds
àCan’t wait to hear from >n-t before taking

next action

Asynchronous Communication

Adversary schedules message delivery, no
global clock
àCan’t wait to hear from >n-t before taking

next action

Do we care about this?
If we assume this, can’t use
computation power to bound
adversary’s ability to solve puzzles

Asynchronous Communication

Adversary schedules message delivery, no
global clock
àCan’t wait to hear from >n-t before taking

next action

Do we care about this?
If we assume this, can’t use
computation power to bound
adversary’s ability to solve puzzles

How about assuming bound on Energy
(Independent of time)?

Impossibility result

One worst case crash fault makes (deterministic)
agreement impossible with asynchrony.
(1982: Fischer, Lynch and Patterson)

Reliable broadcast:
If a player broadcasts the same transaction
To all players, then all decide in 3 steps
Else possibly no decision

There are fast solutions in some cases

With randomness
• If there’s a global coin.

• If there’s secret communication between
good nodes, e.g. with crypto

• If t is O(!)

What kind of randomness?

• Global coin
• Global random oracle:
truly random hash function known to every

node, returns a consistent answer.

doesn’t exist

What kind of randomness?

• Global coin
• Global random oracle:
truly random hash function known to every

node, returns a consistent answer.

doesn’t exist

doesn’t exist either

What kind of randomness?

• Global coin
• Global random oracle:
truly random hash function known to every

node, returns a consistent answer.

doesn’t exist

doesn’t exist either
Usual assumption
for setting puzzles,
creating a common coin,

What kind of randomness?

• Global coin
• Global random oracle:
truly random hash function known to every

node, returns a consistent answer.

doesn’t exist

doesn’t exist either
usual assumption
for setting puzzles,
creating a common coin

• Here, weaker assumption: private
coins

Rest of talk: In the Clear

• Adversary can view state of players.
• Randomness: private random bits only
• No cryptographic assumptions, no random

oracle, no public key system, “plain model”

But what if we can’t pass messages directly?

Rest of talk: 2 different ideas

1 The value of a short common string from a bit-
fixing source

2 Solving Byzantine agreement in a fully
asynchronous environment
Robust to “adaptive adversary”.

Using a O(log n) bit common string

To create a set of n small committees, one for each
node, ALL of which are representative, w.h.p.
Used for
• load balancing
• a communication network or distributed hash

table with reliable supernodes and
• maintain these over changes to the network by

repeatedly choosing strings

To go from Common String to many,
a committee for each node

Create Deterministic
Sampler

To go from Common String to many,
a committee for each node

Create Deterministic
Sampler

Is this constructive? Can
each node determine its
neighbors quickly?

To go from short Common String to a
committee for each node:

Create Deterministic
Sampler

Committee is indexed by
(Common String, node ID)

IDs

To go from short Common String to a
committee for each node:

Create Deterministic
Sampler

Committee is indexed by
(Common String, node ID)

Since almost all committees are
good,

it suffices if a small constant
fraction of bits in Common string
are random

IDs

To go from Common String to a
committee for each node:

Create Deterministic
Sampler

Committee is indexed by
(Common String, node ID)
It works even if:
• adversary sets its bits after

seeing good bits,
• adversary controls more than

half the bits,
• there are bits hidden by delays

from asynchrony

IDs

To go from Common String to a
committee for each node:

Create Deterministic
Sampler

Committee is indexed by
(Common String, node ID)
It works even if:
• adversary sets its bits after

seeing good bits,
• adversary controls more than

half the bits,
• there are bits hidden by delays

from asynchrony
• Even if the ID space is unknown

and poly(n)

IDs

To go from Common String to a
committee for each node:

Create Deterministic
Sampler

Committee is indexed by
(Common String, node ID)
It works even if:
• adversary sets its bits after

seeing good bits,
• adversary controls more than

half the bits,
• there are bits hidden by delays

from asynchrony
• Even if the ID space is unknown

and poly(n)(?)

Is this function
polytime
constructable?

One small representative committee
can:

• Run BA in less time and communication and
then tell other nodes the result.

• Produce a O(log n) bit common string
of fair coins interspersed with ~t/n fraction

of adversary set bits

“Bit fixing random source”

.
A set of mostly representative committees can be
built deterministically and efficiently

1-1/log n fraction of committees have close to
representative membership, for ANY subset of
BAD nodes But requires an

agreed upon
mapping of
nodes to the
graph nodes !!

To elect a single small committee, adapt Feige�s
O(log*n) (broadcast) method for leader election

Each candidate randomly picks a bin;
remaining candidates =lightest bin�s contents

1 2 3 4 5 n/log n…

To elect a single small committee, adapt Feige�s
O(log*n) (broadcast) method for leader election

Each candidate randomly picks a bin;
remaining candidates =lightest bin�s contents

1 2 3 4 5

Even if bad ones see the choices first, lightest bin will be
representative
In one round: #candidates à O(log n) whp

n/log n…

To elect a single small committee, adapt Feige�s
O(log*n) (broadcast) method for leader election

Each candidate randomly picks a bin;
remaining candidates =lightest bin�s contents

1 2 3 4 5

Even if bad ones see the choices first, lightest bin will be
representative
In one round: #candidates à O(log n) whp
• Can be made to work even with asynchrony with polylog

messages in O(logc n) time

n/log n…

Use sampler to map winners to new
committees

!

Winners pick
random bits
which are used
to index sampler
to pick a more
representative
set of winners

Static vs Adaptive adversary

• Note: A technique which elects a small
committee is subject to the adaptive
adversary which takes over the committee
before it acts.

Do we care
about this??

Byzantine agreement with an adaptive
adversary and asynchrony

BA with asynchrony and adaptive
adversary

• Ben-Or, t<n/5 1983 expected exponential
time

• Bracha t<n/3 1984 expected exponential
time

• K, Saia t <cn 2013-6, expected O(n2.5),O(n3)
time, c very small constant

BA with asynchrony and adaptive
adversary

• Ben-Or, t<n/5 1983 expected exponential
time

• Bracha t<n/3 1984 expected exponential
time

• K, Saia t <cn 2013-6, expected O(n2.5),O(n3)
time, c very small constant

Not practical!

BA with asynchrony and adaptive
adversary

• Ben-Or, t<n/5 1983 expected exponential
time

• Bracha t<n/3 1984 expected exponential
time

• K, Saia t <cn 2013-6, expected O(n2.5),O(n3)
time, c very small constant

Not practical!

Not yet

Review: Ben-Or’s BA Alg 1983, t<n/5

While not decided each p repeats:

do Broadcast of vote bp

v ß majority value

tally ß size of majority

CASE: tally

A) > (n+t)/2 then Decides on v

B) > t then bp ß v

C) else bp ß personal coinflip

We modify Ben-Or
While not decided each p repeats:

do Broadcast of vote bp

v ß majority value
tally ß size of majority

CASE: tally
A) > (n+t)/2 then Decides on v
B) > t then bp ß v

C) else bp ß personal coinflip

compute a
Decision results if agrees
with v (“good direction”)

Recall:
Ben-Or’s iterations can be repeated while

is not agreed on or not fair.

Ends when 4n/5 good processors hold the same
value

• Idea: nodes communicate their coinflips and take
a vote

Must be robust to up to t (good) coins missing in
any step.

à

m-sync: adaption of multicast

P1 P2 P3 P4 … Pn

Each node “posts” messages to a column from top to
bottom
All but t columns are full and agreed upon by all good
nodes
For up to t columns, the adversary may stop the node
early and the last value written may be ambiguous.

Use the m-sync: m rounds of coinflips generated by
each node, m~=n to create “blackboard”

• If all nm coins are flipped and fair, then with constant
prob they have deviation σ > #$ > ct if m = n, c
constant

P1 P2

round
s

Adversary can

P1 P2

round
s

1. Stop t columns early
2. Hide the last coin tossed

in each of up to t columns

1. Effect of stopping coins
.
There are n(n-2t) fair coins plus
a number chosen by the adversary
between 0 and tn.

Suppose we let
the adversary sees all the n(n-2t) fair coins first

It will choose to stop the remaining coins so as to
minimize the deviation of the sum

Random walk of n steps
.

Each step is +1, -1 with prob ½
Let n be the number of steps
Let S(n) be the sum after n steps
Let M(n) be the minimum sum achieved during a walk

Lemma : Pr (M(n) ≥k) < 2 Pr(S(n) >k)
Adversary can do no better than to stop the stream of
nt coins at the lowest point in the walk, i.e, M(nt)

With both effects
.Pr(Fair coin is given by the sum of entries in

blackboard)=

Pr(S(n(n-2t)) >M(tn) (for the stopping) + t (for the
hidden coins)]

> Pr(S(n(n-2t)) >2S(tn) + t (for the hidden coins)]
=constant for sufficiently small t

à

The adversary takes over nodes
adaptively and set values in t columns

Adversary

Basic step is n-sync

à

How many iterations are needed to
generate a fair coin sometimes?
Goal is to design a function F=f1, f2, …

Adversary

Basic step is n-sync

f1

f2, f2

How to design an F?

IDEA: If majority does not yield a fair coin
sometimes then
Adversarially controlled columns show a suspect
pattern of Biased coinflips over time, from the
view of a constant fraction of nodes.

Each node individually detects unusual bias and
individually eliminates suspicious nodes

Detection of suspicious nodes:
finding “planted heavy-weighted clique”

Find a set of ≤t suspect nodes S

|S|≤t

Nodes m-syncs (Ben-Or Iterations)

|heads-tails|>B/2
for
nodes in S

Initially, Vp={1,2,…,n} set of columns
p outputs 1 if #heads-#tails from nodes in Vp >0
else 0

Every s iterations, determines Sp suspicious nodes
Sets VpçVp \Sp

Once all bad nodes are excluded by all good
nodes, a O(1) expected iterations of Ben-Or
suffice to produce a fair coin

Constructing a
polynomial time F

How to find suspicious columns
For each group of 2n iterations, construct
matrix Mp

Mp(i,j)= #heads-#tails in m-sync i in column j

DEF: 2-norm of vector v is |v|2 = (Σvi
2)1/2

2-norm of matrix M is |M|2 =max |Mu|2
for all u,

where |u|2=1

Maintain badness score bad(j) for each column
j, initially 0.
Each p removes suspicious nodes (after m
iterations):

If |Mp|2 > Threshold
• r ßtop right singular vector of Mp,
• for all j, increase bad(j) by rj

2

• if bad(j) ≥ 1 remove node j from Vp

To summarize:
Ben-Or’s iterations are repeated until it stops
• m-sync allows all nodes to view nearly the same

coinflips
• Each node p sets its coinflip in Ben-Or to the majority

of the votes in the n-sync cast by nodes in unsuspected
node set Vp (

• If agreement doesn’t occur, many nodes p detect bias
and make progress towards removing bad nodes from
Vp

• Eventually, the bad nodes are removed by enough
nodes p and agreement occurs in constant expected
time.

Larger lesson
Either nodes are cooperative and agreement
happens. Or we can detect them.
Don’t need global hash functions,
assumption of synchrony, solving
puzzles(?). Gives an incentive to act
according to protocol.

Larger lesson
Either nodes are cooperative and agreement
happens. Or we can detect them.
Don’t need global hash functions,
assumption of synchrony, solving
puzzles(?). Gives an incentive to act
according to protocol.
What about changing nodes and Sybil
attacks?

Larger lesson
Either nodes are cooperative and agreement
happens. Or we can detect them.
Don’t need global hash functions,
assumption of synchrony, solving
puzzles(?). Incentive to act according
to protocol or be excluded.
What about changing nodes and Sybil
attacks?
Identities can be interchangeable but the set
of identities controlled by bad nodes must
be stable enough to accumulate badness

Larger lesson
Either nodes are cooperative and agreement
happens. Or we can detect them.
Don’t need global hash functions,
assumption of synchrony, solving
puzzles(?). Incentive to act according
to protocol or be excluded.
What about changing nodes and Sybil
attacks?
Identities can be interchangeable but the set
of identities controlled by good nodes must
be stable enough to accumulate goodness??

References
• Samplers, construction, randomness extraction (David

Zuckerman). Applications to reducing messages (K, Saia, esp
ICDCN 2011, Braud-Santoni PODC 2013)

• On reducing message complexity with the use of public key
crypto and/or random oracles (See Abraham, et al 2018 arxiv,
Katz, Koo STOC 2006)

• o(n2) messages with adapative adversary, if private channels,
no other crypto assumptions (K, Saia JACM 2011)

• Use of representative sets, e.g., for blockchain (NUS paper on
ELASTICO, CCS 2016, Luu et al.), for DHT (Awerbuch and
Scheidler)

• Byzantine agreement with adaptive adversary (K, Saia JACM
2016+ correction for stopping effect Dec 2018 arxiv)

• Using Feige’s to do leader election with asynchrony in the static
model (Kapron,etal. SODA 2008)

Thank you
(and thanks to
Gary Larsen)

Questions?

