Cornell CIS
Computer Science

A CLAS

Ease
of
Programming

HORROR STORY

Performance

THE PIT AND THE PENDULUM

Lorenzo Alvisi

Database * Programmer

Ease
of Performance

Ease
of
Programming

Performance
Programming

Database * Programmer Database * Programmer

ACID TRANSACTIONS:

OB T SIMPLE AND POWERFUL

Pierre Franc Lamy ¢
Young girl on a balcony (1911) 'S

Atomicity
Txn Txn
£ g T;n ACID Txn E =
7 -
=
T : =
f - o xn
Isolation = <=0 T= - (T -
- |-
= Txi
i an
Durability E

““Carlo Carra
Concurrency, Woman on a balcony (1912)

PERFORMANCE VIA WEAKER ANSI SQL-92

ISOLATION GUARANTEES ISOLATION LEVELS

Database System Default Isolation Strongest Isolation

MySQL Cluster Read Committed Read Committed Proscribed Phenomena

* Defined in terms of three Isolation Level Dirty | Fuzzy
SAP HANA Read Committed Snapshot Isolation phenomena that can lead to Read | Read ' hantom
e G serializabilit serializabilit violations of serializability ' . ‘
oogle Spanner erializability. erializability Read Uncommitted
VoltDB Serializability Serializability : MoﬁivatEd by Wea'f”‘”gﬁocslﬁg
Implementations of serializability Rerd Commmiics
Oracle 12C Read Committed Snapshot Isolation ‘ . .
]) » Designed to be implementation
MR Read Committed Read Committed independent (greater flexibility/ Repeazlas Read . ‘ ‘
SQL Server Read Committed Serializability B omance) (Aromay) seriaizae | @) | @) | @
Postgres Read Committed Serializability

»

DIRTY READS

Root: Write-Read conflict

» T modifies a data item.

» Tyreads that data item before T
commits or aborts.

» If T then aborts, T; has read a data

item that was never committed and so

never really existed.

: Ti T2

1| BEGIN

V| RA A=S

Clowmma=1

: BEGIN

i Pr(A) A-124 |
' W(A) A= |5:>
: COMMIT
)

| |or>

! |CABORT

THE PHANTOM MENACE

Non-repeatable predicate-based reads

T reads a set of data items satisfying
<search condition>.

T2 then creates data items that satisfy
T/'s <search condition> and commits.

If T then repeats its read with the
same <search condition>, it gets a
different set of data

On July 10 2018...

BEGIN

FROM players

COMMIT

SELECT MAX (salary)

FROM players =t~t§» 8M
WHERE team = ‘Juve’

BEGIN

INSERT INTO players
(salary = 30M,
team = ‘Juve’)

SELECT MAX (salary)

% 30M

WHERE team = ‘Juve’

COMMIT

FUZZY READS
AKA. NON-REPEATABLE READS

Root: Read-Write conflict

T, reads a data item.

T> then modifies or deletes that data
item and commits.

If T)then attempts to reread the item, it

receives a modified value or discovers
the item was deleted.

WHAT'S NOT TO L

Ti T2
BEGIN
R(A) A=5
\ BEGIN
3
W(A) A=10
COMMIT
R(A) A =10
COMMIT

KE?

Berenson et al, SIGMOD ‘95

* Ambiguous descriptions of proscribed behaviors

Dirty Reads

+ Strict Interpretatiorpronlbits anomaly)

R(A)'A=5

b AL WILX] .. RKT (Arandaa in 2

R(A) A-12

W(A) A=|5>

* Broad Interpreta;t'o?)(prok|lamsuw
b PLWAIX] ... RPXBE((A, brC) and

wy order)

niomenon)

(iAz or C3) in any order)

similar distinction‘s‘"fdr'”'PT(NR'I”'ééd's')"éiﬁd P3 (Phantoms)

PHENOMENA OR

ANOMALIES!?

Dirty Reads

« Non serializable

» Tareads the wrong balance

T T2
BEGIN BEGIN
1 | R(X= 50)
L | WX = 10)
g '\l» R(X = 10)
H R(Y = 50)
COMMIT
R(Y=50)
W(Y = 90)
COMMIT

+ Yet fine by Strict Interpretation Ay...
» WIX] ... Ry[X] ... (A1and G in any order)

» T, does not abort!

* but violates Broad Interpretation Py

» WILX] ... R[X] ... (A1 orCi) and (Azor
Cy) in any order)

ANSI isolation levels
should be intended

to proscribe
phenomena,
not anomalies

PHENOMENA OR
ANOMALIES!?

Non-repeatable Reads

« Non serializable

T‘ 2 » T, reads the wrong balance
BEGIN BEGIN
R(X= 50) . : .
wrxeso [Yet fine by Strict Interpretation Aa...

W(X = 10) :
Mo » RiX] .. Wo[X] ... G . RiI[X] ... C
W(Y = 90) : » No transaction reads same value twice
COMMIT :

R(Y=90)

commrr * but violates Broad Interpretation P2

» RIDX] ... WaX] ... (A1 orCy) and (Azor
Cy) in any order)

WHAT'S NOT TO LIKE?

« ANSI SQL phenomena are weaker than their

locking counterpart

[solation Level Read Locks

Locking Read
Uncommitted

Locking Read Short* read locks
Committed (both)

ACREEiElelCEe) Short predicate locks

None Longt write locks

Long write locks

Locking Long item locks Long write locks

Locking Long read locks
Serializable (both)

Long write locks

Short*: Released after operation ends Longt: Released after transaction commits

ANSI P3 should prevent
phantoms due to
deletions and updates,
not just creations

DIRTY WRITES

Root: Write-Write conflicts

T modifies a data item

T, further modifies that data item
before T| commits or aborts.

Conflicting writes can interleave,
violating invariants

Ti T2
i | BEGIN
Clw@yA=10
BEGIN
WA) A=I5
W(@B) B=15
: COMMIT
' | we)B=I10
i | commiT

WHAT'S NOT TO LIKE?

kill
« ANSI SQOL phenomena a%;\(veaker than their

locking counterpart

[solation Level Read Locks Write Locks

Locking Read

: T wri
U e Longt write locks

Locking Read * read locks

Committed (both) Long write locks

Locking Long item locks

ACRERELIEINCERE Short predicate locks Long write locks

Locking Long read locks
Serializable (both)

Short*: Released after operation ends Longt: Released after transaction commits

Long write locks

ANSI isolation levels
should include

phenomenon PO

PO: W/ [X]... W2[X]...(Cior Ai) and (C2 or A2) in any order

ANSI-92 ISOLATION LEVELS,
POST CRITIQUE

AND YET...

« "“PO,Pl,P2,and P3 are a disguised version of locking”

Write locks on data
items and phantoms

Locking Proscribed Read locks on data
Isolation Level Phenomena items and phantoms i })
» no implementation independence

Degree 0 : none . Short* write locks

N B SRR e § » Preventing concurrent execution of conflicting
Degree | = Locking : ! q ; . - .
READ UNCOMMITTED 5 neps ; Longhwrite lacks 4 operations approach rules out optimistic and multi

Degree 2 = Locking

L ahorereadlocks | Lonahrni version implementations
READ COMMITTED y Short read locks ong write locks

Locking Long data-item read locks;

REPEATABLE READ | Shorcprancomreadlocks | OnE Write locks + PO: WIIX] ... Wo[X] ... (Cj orA)

D‘gzg;;-’;_;k‘;ilgng Long read locks Long write locks » rules out optimistic implementations

...

» similar argument holds for P1, P2. P3

Short*: Released after operation ends Longt: Released after transaction commits

THE RUB SNAPSHOT ISOLATION

* Phenomena expressed through single object histories + T reads from a snapshot of committed values

* but consistency often involves multiple objects atT’s start time
+ T's own writes are reflected in its snapshot

* Same guarantees for running and committed transactions

e . : * When ready to commit, T receives a commit time
* but optimistic approaches thrive on the difference / | " -

* T commits if its updates do not conflict with
» Definition in terms of objects, not versions those of any transaction which committed in the

. interval between T's start time and commit time
* no support for multiversion systems

WRITE SKEW ANOMALY

Ti: Change
green to red

o0
o0

T2 Change
red to green

WRITE SKEW ANOMALY

T Change
green to red///(v \

rea to green
“ ° oo 60

WRITE SKEW ANOMALY

T Change
green to red///(v

red to green . ‘

GENERALIZED
ISOLATION DEFINITIONS

Adya et al, SIGMOD ‘95

» Executions modeled as histories

» a partial order of read/write operations that respects
order of operations in each transaction

» atotal order << of object versions created by
committed transactions

SERIALIZATION GRAPH

* Every history is associated with a Direct
Serialization Graph (DSG)

» nodes are committed transactions

» edges express different types of direct conflicts

write-read T; — T
ww (dependency)
write-write T; — T}
read-write T o, T] (anti-dependency)
» edge expresses temporal relation

start iy i) Tj 6 < S8j

STRONGER
ISOLATION LEVELS

* No aborted reads

» T2 cannot read value of aborted T |

* No intermediate reads

» T2 cannot read value of T| thatT| then overwrites

* No circularity in DSG graph

» edges in cycle depend on isolation level

READ UNCOMMITTED

Proscribes PO: W [X] ... W2[X] ... (Cj or A))

Now, proscribes GO:

T

T

DSG(H) contains a directed cycle
consisting exclusively of WW edges

T2

Concurrent transactions can modify the same object
(as long as they don't all commit)

SNAPSHOT ISOLATION

« DSG(H) proscribes:

wr
s
Ty T2
—ww
T wr T, ww Ts
\i/'
Tl wr -I'2 ww T3

cycles consisting of write-write
or write-read dependencies

a write-read or write-write
edge without a start edge

a cycle consisting of write-read/
write-write/start-edges, and a
single read-write edge

ALLS WELL? ALLS WELL?

T T2 ; T T
H E BEGIN
+ | BEGIN H
: BEGIN Theory ; BEGIN
: " : ! R(X = 10)
: W(X= 10 ; o
b wir=s0) G o X| | s g R(Y=50)
i | wix=80) : MySQL Communit ki W(Y=80)
: W(Y=90) E Multiversion Serializability x E WX = 90)
C v R : BT
' COMMIT ' '
i | commir i i | commi
H H x Anomaly Seridlizability g
H Oracle 12C] 0

DON'T KNOW MUCH

li
WHY THE CONFUSION: ABOUT HISTORIES

y

* Applications experience isolation guarantees as

How isolation contracts specifying which values they can read
properties

are formalized

(i.e. which states they can observe)

* Low-level read/write operations are instead

» invisible to applications

How applications

Ve th » encourage system-specific definitions
perceive them

A STATE-BASED DEFINITION

Crooks et al, 2017

* Isolation guarantees as constraints on read states

» states consistent with what the application observed

N < X
N < X

A STATE-BASED DEFINITION

Crooks et al, 2017

A storage system guarantees a specific isolation
level I if it can produce an execution (a sequence
of atomic state transitions) that

+ is consistent with every transaction’s read states

+ satisfies the commit test for I, for every transaction

If no read state prove suitable for some
transaction, then I does not hold

A STATE-BASED DEFINITION

Crooks et al, 2017

+ Isolation guarantees as constraints on read states

» states consistent with what the application observed

» Each transaction is associated with a set of
candidate read states

N < X
N < X

* At commit, transaction must pass a commit test
that narrows down which read states are acceptable

PARENT STATES AND
COMPLETE STATES

N X X
N < X

: Xo To T2 T
Se : Yo S D S—— D E—

PARENT STATES AND
COMPLETE STATES

« Parent state sp of T:state from which T commits

- X To T2 T
Se Y S e

N X X
N < X

PARENT STATES AND
COMPLETE STATES

« Parent state sp of T:state from which T commits

- X To T2 T
Se Y ety e

« Complete state forT: a read state for all read ops in T

%o To T2
o R(Z)
R(Y

N X X
N < X

N X X
N < X
_|

PARENT STATES AND
COMPLETE STATES

« Parent state sp of T: state from which T commits

%o To T2 T
Se Y S e

« Complete state forT: a read state for all read ops in T

N X X
N < X

N X X
N < X
_|

%o To T2
o R(Z)
R(Y

SERIALIZABILITY

SERIALIZABILITY SNAPSHOT ISOLATION

. ‘ . + DSG(H) proscribes:
« Given a set of transactions T and their read states,

serializability holds if there exists execution e U
such that forall T in T Tl_/TZ
COMPLETEQ,T(SP) T wr T, ww T
W
T1 wr T ww T

SNAPSHOT ISOLATION SNAPSHOT ISOLATION

* Civen a set of transactions T and their read states, * Civen a set of transactions T and their read states,
snapshot isolation holds if there exists execution e snapshot isolation holds if there exists execution e
such that forall T in T such that forall T in T

3s € S,. A COMPLETEe.7(5) Js € Se. A COMPLETEe,7(5)

/\(A(S, Sp) N Wr = (Z))

PERFORMANCE VIA WEAKER
ISOLATION GUARANTEES

[t-That-Shall-Not-Be-Named

dirty writes - transaction modifies item previously modified by undecided transaction

Read-Uncommitted

dirty reads: one transaction may see uncommitted state of another transaction

Read-Committed

no dirty reads or writes, but allows for non-repeatable reads

Repeatable Reads

non-repeatable range reads

Snapshot Isolation

none of the above, but write skew

Custom code for better performance

Complexity gets quickly out of control

Implement
Consistency

Application

Storage Interface

BASB Storage (%@ﬁﬁﬁbﬁt)

A CLASK HORROR STORY

Ease
of
Programming

Performance

Da Programmer

MORE CONCURRENCY !

Time

(<)
Transfer

c=$10?

|

Transfer
c=$10?

c:=c-$10
s :=s+$10

[

>

Transfer

)
Partl

N——

Part2

—

Transfer

)
Partl

c:=c-$10
—

Part2

N/

MORE COMPLEXITY!

Transfer

<
<—

Balance

(Partl

eI TSSO

~

®n for one transaction
dct all transactions!

MORE COMPLEXITY!

Balance

Performance vs Complexity

Better Performance

|

More Interleavings

|

Greater Complexity

NOT ALL TRANSACTIONS
ARE CREATED EQUAL

+ Many transactions are
not run frequently

* Many transactions
are lightweight

20% of the causes
account for
80% of the effects

-

Vilfredo Pareto

Performance vs Complexity

More Interleavings
selectively

Performance vs Complexity

Better Performance

|

More Interleavings

|

Greater Complexity

Beflormance /s

More Interleavings
selectively

NOT ALL TRANSACTIONS
ARE CREATED EQUAL

Use a flexible
abstraction

alkaline txn

alkaline txn

BASE TRANSACTION

i transaction

l alkaline txn ¥

} Atomicity
; Durability

Different Isolation guarantees for
different types of transactions

BASE WITH BASE

................

Fine Isolation granularity
between BASE transactions

SALT ISOLATION

To BASE transactions: To ACID transactions:
a sequence of small a single, monolithic
ACID transactions ACID transaction

BASE WITH ACID

TN
BASE ACID
= =
—
(S

i

Uy

—>

Coarse Isolation granularity
to ACID transactions

HOW WELL DOES IT WORK?

How does the
performance of

Salt compare
to ACID?

How much
programming effort
is required to get
that performance!?

OGRAMMING EFFORT VS
PERFORMANCE

Throughput (transactions/sec)

12000
10000
8000
6000
4000
2000

TPC-C

Fusion Ticket
10000

ACID | 2 3 4 BASE Eley

Number of BASE-ified transactions 6000

4000

2000

Throughput (transactions/sec)

ACID | 2 3 Raw ops
Number of BASE-ified transactions

2000

1500

1000

Latency (ms)

w1
o
o

PERFORMANCE GAIN

TPC-C ‘
Configuration
ACID 2 Salt * Emulab Cluster (Dell Power Edge R710)
6.6X
« g + 10 shards, 3-way replicated
Fusion Ticket
250
O 2000 4000 6000 8000 10000 12000 5,
Throughput (transactions/sec) @ Salt
£ 150 ACID
9
g 100
o E 6.5%
Running on MYSQL Cluster s g p

0
0 1000 2000 3000 4000 5000 6000 7000 8000

Throughput (transactions/sec)

ANDYET... WHAT DO PROGRAMMERS WANT?

4 v Te . 9
J 1@ : 1@ - 1@ < 1@ 2
CcT o NTEE >
) 1@ 1@ 1@ I4Q
Ir e hip7 @G pCirp nCl
k T - =
Programming BASE transactions > - = by
is still hard! i i i 1@
T T 1D ~1D
v 1@ 1@ re T
D ACID ACID ACID ACI
D

VB IL@MEACID NOT ALL TRANSACTIONS
| P ARE CREATED EQUAL

Use a flexible
Imatstnactienon

ESIE PRICE OF UNIFORMIERE

[Ubifofooitstetigotiation

Conservative Mechanism

M@BUITAR CONCURRENCY COINIRREIE M®BUITAR CONCURRENCY COINIRREIE

, C ACID Abstraction)
: (ACID Abstraction) : 3 s
Cross-Group CC
(&= | [T."Rimi;e Scd
Specialized Specialized = -
in-group CC in-group CC I i
G Ao walsivel Qptirfiegtions
g B T®
- SN\ J

Impleraeniation Implementation

Insight 1: Decouple Abstraction and Implementation Insight 2: Separation of Concerns

CORRECTNESS ACROSS
GROUPS

Goal: No dependency cycles over all transactions

|. No cycles within each group

2. No cycles spanning multiple groups

A SUBTLE PROBLEM

Ao L PSR O T T

B
—
X

_|

w

R s

SN
a
() Co—
\ 4 AR —x

~ -

ISOLATION ACROSS GROUPS

Always conflict
for transactions in
\ different groups
A (unless both reading)

Nexus locks

Never conflict
for transactions in
the same group

Minimal interference
with group-specific CC

TRADITIONAL LOCKING

Time
ties depends on to completes before

S UBTLEE RROBIESN

~ -

ENFORCE LOCK RELEASE
Time ORDER ezmmmmTmoe. R

)
Txn |
W(A)

5
| |

Cl }------

A REFINEMENT

T, dependson T,

T2 cannot-start before T completes
release Its releases its
nexus locks nexus locks

Nexus Lock Release Order

ISOLATION WITHIN GROUPS

Increase in-group concurrency
while maintaining safety

TRANSACTION CHOPPING

Shasha et al.'95

Static Analysis

—

(Txnl-I Txn 2-1
R(A) UG
W(A)

rTxn 2-2‘ Txn 2-2
W(B) W(C)

TRANSACTION CHOPPING

Shasha et al.'95

.

TRANSACTION CHOPPING

Txn |

W(B)

Shasha et al.'95

TRANSACTION CHOPPING

Shasha et al.'95

+MCC: No SC cycle arrers-at-transactons

within each group

SEEFCONEEEHE SEEFCONEEEHE

fm\ Txn |
W(B)
W(C)

ENEYY CC MECHEAINISING

RUNTIME PIPELINING RUNTIME PIPELINING

Accurate
Detection

RUNTIME PIPELINING

dep

ROV VWELL DOES IT WORS

This talk...

End-to-end
performance

...but of course there's more

What are the
relative merits

of Callas’ various
optimizations?

What is
the overhead

of nexus locks?

What is
the effect of using
different groupings?

HOW TO GROUP

Default Group

Throughput (transactions/sec)

CALLAS PERFORMANCE

%]
) 5=
=1 [ss}
[35)

w
O

TCHMIGE

MySQL Cluster
MySQL Cluster

TC

TRCLC Fusion Ticket

BENEFIT OVER ACID BASELINE TRANSACTION CHOPPING

‘0" 20000 ‘0" 20000

3 s 0

) G @

5 16000 B 5 16000 wa

= =

3 3

€ 12000 4 a € 12000 E

E 3 5 3 o g g

N2 a Y ¥} N 5 o i

+= 8000 o 5 = 8000 0 F g

(OL, -l ol -l

= o EIY b= o 5

S 4000 | 2 2 00 & 2

= W | o = . -
TPC-C Fusion Ticket ‘ TPC-C Fusion Ticket

ERANSACTION CHOPPING M@ @ TEAS: MCC + RUNTIME PIPEENN S
3 20000 3 20000

o 3 8

S 16000 == BB S 16000 e

G 0 © 0

212000 x 2 12000 : "
e e e = 3
Ne2) v N O o
= 8000 g o S 8000 0
& O & O

50 4000 e 50 4000 -

o P o P

= 0 - = 0 1

TIRCAC Fusion Ticket ‘ TIRCAC Fusion Ticket

CONCIEISIOIN

WITHIN 5% OF SALT

ACID Abstraction

Jes

sejred
jles
se|je
o o =)
- . 5 8 ©
Q o o S S
= O N o ~

(33s/suondesuedy) Indydnody |

Fusion Ticket

TPC-C

