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FCC’s “Incentive Auction”

• Over 13 months in 2016-17 the FCC held an 
“incentive auction” to repurpose radio spectrum 
from broadcast television to wireless internet

• In total, the auction yielded $19.8 billion

– over $10 billion was paid to 175 broadcasters for voluntarily 
relinquishing their licenses across 14 UHF channels (84 MHz)

– Stations that continued broadcasting were assigned 
potentially new channels to fit as densely as possible 
into the channels that remained

– The government netted over $7 billion (used to pay down the 
national debt) after covering costs



Thanks to all those who helped make this work possible!

Colleagues and students 
(then) at UBC:

• Chris Cameron

• Holger Hoos

• Frank Hutter

• Ashiqur Khudabukhsh

• Steve Ramage

• James Wright

• Lin Xu

Students who made 
code contributions:
• Nick Arnosti

• Emily Chen

• Ricky Chen

• Paul Cernek

• Guillaume 
Saulnier Comte

• Alim Virani

FCC & Auctionomics:
• Melissa Dunford
• Gary Epstein
• Ulrich Gall
• Karla Hoffman
• Sasha Javid
• Evan Kwerel
• Jon Levin
• Rory Molinari
• Brett Tarnutzer
• Venkat Veeramneni
• Karen Wrege

Funding from: Auctionomics; Compute Canada; NSERC Discovery; NSERC E.W.R. Steacie

Student leads on
feasibility checking:

Neil Newman ,    Alexandre Fréchette

Key collaborators 
on market design:

Paul Milgrom ,                        Ilya Segal



Unusual Freedom in the Design Process

Went beyond just the choice of mechanism to include:

• Participants’ property rights

• Definition of goods to be traded

• Quantity of goods to trade

• Outcomes the market should seek to achieve

– efficiency

– revenue

– increased competition in the consumer market

– bidding simplicity for unsophisticated participants

Computational tractability was a first-order concern

[L-B, Milgrom, Segal, PNAS 2017]



Property Rights

• Law was unclear about broadcasters’ 
property rights
– but confiscation would have triggered a long 

legal process

• Famous argument from Coase: for efficient 
allocation, need only clear property rights 
and no “frictions”

• Unfortunately, our setting gives rise to a critical friction: 
holdout power
– wireless companies want to clear many channels’ worth of 

spectrum in large, contiguous geographic areas

– one channel could threaten to block the whole transaction in 
exchange for a big payout 

– any efficient market (e.g., VCG) enforces such high payments 
to each channel; not budget balanced



Defining Property Rights

• This problem is reduced by a redefinition of property 
rights: stations have a right to keep broadcasting if they 
don’t sell, but not necessarily on their original channel

– Thus, we don’t have to buy out a specific set of stations, 
but rather a sufficient number of them 

– In other words, stations are made substitutes for each other, 
fostering competition



How Much Spectrum to Clear?

The FCC decided to standardize the amount of spectrum 
cleared across the country. How much should this be?

• Standard economics solution (with homogeneous 
goods): trade the quantity of good for which there’s a 
market clearing price with supply meeting demand

• In our setting, no homogeneous good, no single price
– every station’s broadcast license covers a different population

– every wireless license is distinct

– these two kinds of licenses are different from each other
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Externalities

• Economic theory: best to define property rights to 
ensure that others don’t care who wins a good

– In the incentive auction: assigning a given station to a given 
channel should not cause more than minimal interference
(0.5% of population) for any other channel

• But: verifying on the fly not computationally feasible

– quantifying the number of customers affected by interference 
under a given assignment of channels to stations takes 
days of computer time

– with 2990 stations needing to be assigned into 29 channels, 
292990 ≅ 104300 possible assignments
• compare to 1080 atoms in the universe!



Redefining Harmful Interference

• A station 𝑗 suffers minimal interference if no other single 
station interferes with > 0.5% of 𝑗’s preauction audience
– such pairwise constraints can be precomputed

• Even so, the problem of determining whether there 
exists any channel assignment for a set of stations is 
NP-complete (graph coloring)
– thus, worst-case running time must scale exponentially with 

number of stations (unless P = NP)

– typically possible to do better in practice, but it’s not easy

• We cannot expect a decentralized process to solve an 
NP-complete problem tractably 
– would imply an efficient distributed algorithm

– so, there’s a role for a central authority like the FCC and for 
careful market design



A Heuristic Clock Auction Alternative

• Forward (ascending-price) auction for telecom firms

– prices in each region increase while demand exceeds supply

• Reverse (descending-price) auction for broadcasters

– prices offered for stations decreases while supply exceeds 
demand

• When auctions terminate, ensure revenue target is met

– if not, grow the size of the reduced band (i.e., clear less spectrum); 
auctions continue



How Does the Reverse Auction Work?

• Let’s consider the example of 
airline overbooking, where 
passengers either fly in their 
assigned cabin or are 
compensated to give up their seat

• Thus, the feasibility constraint is 
(# passengers in cabin) ≤ (# seats) 

• We’ll use a descending clock
auction to set compensations

• Let’s start with a plane big 
enough to hold everyone…



Reverse Auction: Descending Clock

$1,000The airline 
substitutes 
a smaller 
plane and 

offers 
compensation
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Reverse Auction: Descending Clock
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• The feasibility constraints are not uniform

– nearby stations can freeze at different times

New York

Midwest

LA

Real Constraints are Highly Complex



Feasibility Testing

• Basis of “frozen test”: ~100K per auction; ~20K nontrivial

• A hard graph-colouring problem

– 2990 stations (nodes)

– 2.7 million interference constraints

(channel-specific interference)

– Initial skepticism about whether

this problem could be solved

exactly at a national scale

– We did it via “deep optimization” [Newman, Frechette, L-B, CACM 2017]

• What if we can’t solve an instance?

– Needed a minimum of two price decrements per 8h business day

• each feasibility check was allowed a maximum of one minute

– Treat unsolved problems as infeasible

• raises costs slightly, but doesn’t hurt incentives

• contrast with VCG, which can’t gracefully degrade



Building (& Evaluating) a Feasibility Tester

• Our original analysis used proprietary data from the FCC

• Evaluation here is based on new data gathered from a full 
reverse auction simulator (UHF; VHF) we wrote ourselves

• Simulation assumptions:
– 84 MHz clearing target

– valuations generated by sampling from a model due to Doraszelski, 
Seim, Sinkinson and Wang [2016]

– stations participated when their private value for continuing to 
broadcast was smaller than their opening offer for going off-air

– 1 min timeout given to SATFC

• 20 simulated auctions  60,057 instances
– 2,711 – 3,285 instances per auction

• all not solvable by directly augmenting the previous solution

• about 3% of the problems encountered in full simulations

• Our goal: solve problems within a one-minute cutoff



Feasibility Testing via MIP Encoding



Feasibility Testing via SAT Encoding



Feasibility Testing via SAT Encoding



Continued, huge increases in compute power
Approaches that might have seemed crazy even in 2005 make a lot more sense now…

Taken from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/



Deep Optimization

Machine learning

• Classical approach
– Features based on expert insight

– Model family selected by hand

– Manual tuning of hyperparameters

• Deep learning
– Very highly parameterized models, 

using expert knowledge to identify 
appropriate invariances and model 
biases (e.g., convolutional structure)

• “deep”: many layers of nodes, 
each depending on the last

– Use lots of data (plus “dropout” 
regularization) to avoid overfitting

– Computationally intensive search 
replaces human design

Discrete Optimization

• Classical approach
– Expert designs a heuristic algorithm

– Iteratively conducts small 
experiments to improve the design

• Deep optimization
– Very highly parameterized algorithms 

express a combinatorial space of 
heuristic design choices that make 
sense to an expert
• “deep”: many layers of parameters, 

each depending on the last

– Use lots of data to characterize 
the distribution of interest

– Computationally intensive search 
replaces human design



Algorithm Configuration

• Deep optimization: use automated methods to choose 
algorithm designs from a highly parameterized space
– which branching heuristic, variable ordering, preprocessing strategy, 

clause learning technique, …

• Such automated methods are called algorithm configurators



Sequential Model-based Algorithm Configuration (SMAC)

[Hutter, Hoos & L-B; 2011]



Best Configured Solver



Problem-Specific Speedups

• All problems ask whether it’s feasible to add one 
station to an existing set known to be feasible

– local search: initialize at the known solution 

– incomplete approach: fix channels for non-neighboring 
stations, solve the remaining problem optimally

• Containment caching: search for supersets of 
the given station set that have been proven 
feasible in past runs

• Decompose the induced constraint graph

• Identify & remove underconstrained stations

𝑆′

𝑆

(skip the details)



Reusing Previous Solutions (I)

• Problems arise 
sequentially by 
adding a single station 
to a SAT problem

• we always have 
a solution to the 
previous problem

• Local search solvers 
can be initialized with 
the previous solution

Now I’ll discuss some problem-specific heuristics 
that we can expose as additional parameters…



Reusing Previous Solutions (II)

• When adding a new station we can 
try to reuse the previous solution

• Fix all non-neighboring stations to 
their channels from previous solution

• Just a heuristic – cannot prove UNSAT

• We can slowly expand the problem 
(e.g. neighbors of neighbors)



Caching

• We’d be willing to leverage enormous amounts of 
offline computation to make a faster solver

• Opportunity: we know the constraint graph in advance

• Obstacle: 𝟐𝒏 possible repacking problems

• Reason for optimism: not all occur in practice

– The order in which stations exit the auction and hence have to 
be repacked is induced by valuations + auction mechanism

– Valuations depend on the population served by a station, and 
hence are nonuniform

• So, would it work to cache previous solutions?
We tried and… No. Almost no cache hits



Supersets and Subsets

• Observation: if station set 𝑆 is repackable, 
so is every station set 𝑺′ ⊆ 𝑺

– Useful because there are 
exponentially many such sets 𝑆′

– Likewise, if 𝑆 is not repackable, 
neither is any 𝑆′′ ⊇ 𝑆

• Idea: when we encounter a new station set 𝑆, look for 
any satisfiable superset or any unsatisfiable subset

• Problem: we can’t query this cache with a hash function

– An exponential number of keys could match a given query

• Solution: a fast, novel caching scheme that permits 
subset/superset queries

𝑆′

𝑆



Problem Decomposition

• Disconnected components of 
a given problem’s induced 
constraint graph are 
independent problems

– Smaller problems also more 
likely to generate cache hits

• Previous solution solves all but 
one component containing 
the added station



Removing Underconstrained Stations

• No matter how neighbors are assigned channels, 
underconstrained stations always have a feasible 
channel remaining

– remove these stations from the problem

– solve the smaller problem

– add them back at the end if the problem is feasible

• Find such stations via sound but incomplete heuristics

– trade off quality vs running time

– averaging across instances, our strongest heuristic identified 
56% of stations as underconstrained

• Removing these stations enhances decomposition

– and hence further enhances caching

45



Portfolio Construction via Deep Optimization

• We now (effectively) have an algorithm with 
a large and deep parameter space:

– Choose a complete or local-search solver?
• Which one?

– with which solver parameters

» and, depending on solver, conditional subparameters?



clasp: our Best Performing Complete Solver

Very highly configurable: ideal for deep optimization

cf. [Gebser, Kaminski, Kaufmann & Schaub, 2012]
http://www.cs.uni-potsdam.de/clasp



SATenstein: a highly parameterized LS framework

• Frankenstein’s goal:
– Create “perfect” human being from 

scavenged body parts

• SATenstein’s goal:
– Create high-performance SAT solvers using 

components scavenged from existing solvers

• Components drawn from or inspired by 
existing local search algorithms for SAT
– parameters determine which components are 

selected and how they behave (41 total)

– designed for use with deep optimization (3 levels of conditional params)

• SATenstein can instantiate:
– most high-performance solvers previously proposed in the literature 

• at least 26 distinct solvers; for this project we added 3 more, including DCCA

– trillions of novel solver strategies

[Khudabukhsh, Xu, Hoos, L-B; 2009, 2016]



Portfolio Construction via Deep Optimization

• We now (effectively) have an algorithm with 
a large and deep parameter space:

– Choose a complete or local-search solver?
• clasp or SATenstein?

– with which solver parameters

» and, depending on solver, conditional subparameters?

– Which problem-specific speedups?
• …again with their own parameters

– Plus some generic speedups not yet mentioned:
• AC3 (arc consistency)

• Changing the SAT encoding

• And, is a single algorithm enough?



Algorithm Portfolios

• Often different solvers perform well 

on different problem instances

• Idea: build an algorithm portfolio, 

consisting of different algorithms 

that can work together to solve a 

problem

• SATzilla: state-of-the-art portfolio 

developed by my group (2003-present)

– machine learning to choose algorithm

on a per-instance basis

• Or, just run all the algorithms in the 

portfolio together in parallel

[L-B, Nudelman, Shoham, 2002-2009; Xu, Hutter, Hoos, L-B, 2007-12]



• Hydra: augment an additional 
portfolio P by targeting instances 
on which P performs poorly

• Give SMAC a dynamic performance metric:
– performance of alg s when s outperforms P;

performance of P otherwise

– Intuitively: s scored for marginal contribution to P

Iteratively optimize this metric, given clasp and Satenstein:

Design Patterns Empirical Hardness Models SATzilla SATenstein Hydra

Hydra: Automatic Portfolio Synthesis
[Xu, Hoos, L-B, 2010; Xu, Hutter, Hoos, L-B, 2011; Lindauer, Hoos, L-B, Schaub, 2016]



Putting It All Together

90% in 2s 96% in 60s



Evaluating the Design on Practical Problems

• Can’t run VCG on national-scale 
problems: can’t find optimal 
packings

• To make a realistic problem we 
could solve exactly, we restricted 
to all stations within two 
constraint hops of New York

– a very densely connected region

– 218 stations met this criterion



Outcome Quality (NYC + 2 Hops)

“Greedy”: check whether existing solution can be directly augmented with new station



Outcome Quality (National)

“Greedy”: check whether existing solution can be directly augmented with new station

2.9× Value Loss
(> $2 Billion)

3.5×
Cost Savings

(> $5 Billion)



Conclusions

• Spectrum reallocation is a socially important problem that 
posed interesting new challenges for auction theory

– defining property rights

– expressing constraints about externalities in a tractable way

– determining amount of spectrum to repurpose

– finding a computationally tractable, robust, budget balanced, and 
easy to understand mechanism

• The FCC used descending auctions to buy back spectrum 
from TV broadcasters

– advantages: simple, robust, many good economic properties

– a key challenge: ~100,000 NP-complete problems must be solved 
in real time; auction revenue suffers when they can’t be

• I described how this repacking problem was solved at national scale, 
via “deep optimization” (algorithm configuration; algorithm portfolios); 
SATenstein; problem-specific speedups; caching


