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The case for “Big Data” in one slide 

 “Big” data arises in many forms: 

– Medical data: genetic sequences, time series 

– Activity data: GPS location, social network activity 

– Business data: customer behavior tracking at fine detail 

– Physical Measurements: from science (physics, astronomy) 

 Common themes:  

– Data is large, and growing 

– There are important patterns and trends in the data 

– We want to (efficiently) find patterns and make predictions 

 “Big data” is about more than simply the volume of the data 

– But large datasets present a particular challenge for us! 
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Computational scalability 

 The first (prevailing) approach: scale up the computation 

 Many great technical ideas: 

– Use many cheap commodity devices 

– Accept and tolerate failure 

– Move code to data, not vice-versa 

– MapReduce: BSP for programmers 

– Break problem into many small pieces 

– Add layers of abstraction to build massive DBMSs and warehouses 

– Decide which constraints to drop: noSQL, BASE systems 

 Scaling up comes with its disadvantages: 

– Expensive (hardware, equipment, energy), still not always fast 

 This talk is not about this approach! 
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Downsizing data 

 A second approach to computational scalability:  
scale down the data! 

– A compact representation of a large data set 

– Capable of being analyzed on a single machine 

– What we finally want is small: human readable analysis / decisions 

– Necessarily gives up some accuracy: approximate answers 

– Often randomized (small constant probability of error) 

– Much relevant work: samples, histograms, wavelet transforms 

 Complementary to the first approach: not a case of either-or 

 Some drawbacks: 

– Not a general purpose approach: need to fit the problem 

– Some computations don’t allow any useful summary 
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Outline for the talk 

 Part 1: Few examples of compact summaries (no proofs) 

– Sketches: Bloom filter, Count-Min, AMS 

– Sampling: count distinct, distinct sampling 

– Summaries for more complex objects: graphs and matrices 

 Part 2: Some recent work on summaries for ML tasks 

– Distributed construction of Bayesian models 

– Approximate constrained regression via sketching 
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Summary Construction 

 A ‘summary’ is a small data structure, constructed incrementally 

– Usually giving approximate, randomized answers to queries 

 Key methods for summaries: 

– Create an empty summary 

– Update with one new tuple: streaming processing 

– Merge summaries together: distributed processing (eg MapR) 

– Query: may tolerate some approximation (parameterized by ε) 

 Several important cost metrics (as function of ε, n):  

– Size of summary, time cost of each operation 



Bloom Filters 

 Bloom filters [Bloom 1970] compactly encode set membership  

– E.g. store a list of many long URLs compactly  

– k hash functions map items to m-bit vector k times 

– Update: Set all k entries to 1 to indicate item is present 

– Query: Can lookup items, store set of size n in O(n) bits 

 Analysis: choose k and size m to obtain small false positive prob 

 

 

 

 

 Duplicate insertions do not change Bloom filters 

 Can be merge by OR-ing vectors (of same size) 

item 

1 1 1 
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Bloom Filters Applications 

 Bloom Filters widely used in “big data” applications 

– Many problems require storing a large set of items 

 Can generalize to allow deletions 

– Swap bits for counters: increment on insert, decrement on delete 

– If representing sets, small counters suffice: 4 bits per counter 

– If representing multisets, obtain (counting) sketches  

 Bloom Filters are an active research area 

– Several papers on topic in every networking conference… 

item 

1 1 1 
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Count-Min Sketch 

 Count Min sketch [C, Muthukrishnan 04] encodes item counts 

– Allows estimation of frequencies (e.g. for selectivity estimation) 

– Some similarities in appearance to Bloom filters 

 Model input data as a vector x of dimension U  

– Create a small summary as an array of w  d in size 

– Use d hash function to map vector entries to [1..w] 

W 

d 
Array: 

CM[i,j] 
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Count-Min Sketch Structure 

 Update: each entry in vector x is mapped to one bucket per row. 

 Merge two sketches by entry-wise summation 

 Query: estimate x[j] by taking mink CM[k,hk(j)] 
– Guarantees error less than e‖x‖1 in size O(1/e) 

– Probability of more error reduced by adding more rows 

+c 

+c 

+c 

+c 

h1(j) 

hd(j) 

j,+c 

d
 ro

w
s 

w = 2/e 
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Generalization: Sketch Structures 

 Sketch is a class of summary that is a linear transform of input 

– Sketch(x) = Sx for some matrix S 

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y) 

– Trivial to update and merge 

 Often describe S in terms of hash functions 

– S must have compact description to be worthwhile 

– If hash functions are simple, sketch is fast 

 Analysis relies on properties of the hash functions 

– Seek “limited independence” to limit space usage 

– Proofs usually study the expectation and variance of the estimates 
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Sketching for Euclidean norm 

 AMS sketch presented in [Alon Matias Szegedy 96] 

– Allows estimation of F2 (second frequency moment) aka ‖x‖2
2 

– Leads to estimation of (self) join sizes, inner products 

– Used at the heart of many streaming and non-streaming applications: 
achieves dimensionality reduction (‘Johnson-Lindenstrauss lemma’) 

 Here, describe the related CountSketch by generalizing CM sketch  

– Use extra hash functions g1...gd {1...U} {+1,-1} 

– Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j) 

 Estimate squared Euclidean norm (F2) = mediank i CM[k,i]2 

– Intuition: gk hash values cause ‘cross-terms’ to cancel out, on average 

– The analysis formalizes this intuition 

– median reduces chance of large error 
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L0 Sampling 

 L0 sampling: sample item i with prob (1±e) fi
0/F0 (# distinct items) 

– i.e., sample (near) uniformly from items with non-zero frequency 

– Challenging when frequencies can increase and decrease 

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05] 

– Sub-sample all items (present or not) with probability p 

– Generate a sub-sampled vector of frequencies fp 

– Feed fp to a k-sparse recovery data structure (sketch summary)  

 Allows reconstruction of fp if F0 < k, uses space O(k) 

– If fp is k-sparse, sample from reconstructed vector 

– Repeat in parallel for exponentially shrinking values of p 
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Sampling Process 

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U 

– Want there to be a level where k-sparse recovery will succeed 

 Sub-sketch that can decode a vector if it has few non-zeros 

– At level p, expected number of items selected S is pF0 

– Pick level p so that k/3 < pF0  2k/3 

 Analysis: this is very likely to succeed and sample correctly 

 

p=1 

p=1/U 

k-sparse recovery  
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Graph Sketching 

 Given L0 sampler, use to sketch (undirected) graph properties 

 Connectivity: find the connected components of the graph 

 Basic alg: repeatedly contract edges between components 

– Implement: Use L0 sampling to get edges from vector of adjacencies 

– One sketch for the adjacency list for each node 

 Problem: as components grow, sampling edges from components 
most likely to produce internal links 
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Graph Sketching 

 Idea: use clever encoding of edges [Ahn, Guha, McGregor 12] 

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i 

 When node i and node j get merged, sum their L0 sketches 

– Contribution of edge (i,j) exactly cancels out 

 

 

 

– Only non-internal edges remain in the L0 sketches 

 Use independent sketches for each iteration of the algorithm 

– Only need O(log n) rounds with high probability 

 Result: O(poly-log n) space per node for connected components 

 

i j 
+ 

= 
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Matrix Sketching 

 Given matrices A, B, want to approximate matrix product AB 

– Measure the normed error of approximation C: ǁAB – Cǁ 

 Main results for the Frobenius (entrywise) norm ǁǁF 

– ǁCǁF = (i,j Ci,j
2)½   

– Results rely on sketches, so this entrywise norm is most natural 
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Direct Application of Sketches 

 Build AMS sketch of each row of A (Ai), each column of B (Bj) 

 Estimate Ci,j by estimating inner product of Ai with Bj 

– Absolute error in estimate is e ǁAiǁ2 ǁBjǁ2 (whp) 

– Sum over all entries in matrix, Frobenius error is eǁAǁFǁBǁF 

 Outline formalized & improved by Clarkson & Woodruff [09,13] 

– Improve running time to linear in number of non-zeros in A,B 
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More Linear Algebra 

 Matrix multiplication improvement: use more powerful hash fns 

– Obtain a single accurate estimate with high probability 

 Linear regression given matrix A and vector b: 
 find x  Rd to (approximately) solve minx ǁAx – bǁ 

– Approach: solve the minimization in “sketch space” 

– From a summary of size O(d2/e) [independent of rows of A] 

 Frequent directions: approximate matrix-vector product  
[Ghashami, Liberty, Phillips, Woodruff 15]  

– Use the SVD to (incrementally) summarize matrices 

 The relevant sketches can be built quickly: proportional to the 
number of nonzeros in the matrices (input sparsity) 

– Survey: Sketching as a tool for linear algebra [Woodruff 14] 
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Lower Bounds 

 While there are many examples of things we can summarize… 

– What about things we can’t do?  

– What’s the best we could achieve for things we can do? 

 Lower bounds for summaries from communication complexity 

– Treat the summary as a message that can be sent between players 

 Basic principle: summaries must be proportional to the size of the 
information they carry 

– A summary encoding N bits of data must be at least N bits in size! 

 

 1 0 1 1 1 0 1 0 1 … 

Alice 

Bob 



Part 2:  
Applications in Machine Learning 



1. Distributed Streaming Machine Learning 

 
                   

Network 

Machine Learning Model 

Observation 
Streams 

 Data continuously generated across distributed sites 
 Maintain a model of data that enables predictions 
 Communication-efficient algorithms are needed! 
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Continuous Distributed Model 

 Site-site communication only changes things by factor 2 

 Goal: Coordinator continuously tracks (global) function of streams 

– Achieve communication poly(k, 1/e, log n) 

– Also bound space used by each site, time to process each update 

Coordinator 

k sites 

local stream(s) 
seen at each site 

S1 Sk 

Track f(S1,…,Sk) 
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Challenges 

 Monitoring is Continuous… 

– Real-time tracking, rather than one-shot query/response 

 …Distributed… 

– Each remote site only observes part of the global stream(s) 

– Communication constraints: must minimize monitoring burden 

 …Streaming… 

– Each site sees a high-speed local data stream and can be resource 
(CPU/memory) constrained 

 …Holistic… 

– Challenge is to monitor the complete global data distribution 

– Simple aggregates (e.g., aggregate traffic) are easier 



Graphical Model: Bayesian Network 

 Succinct representation of a joint 
distribution of random variables 

 Represented as a Directed Acyclic Graph 

– Node = a random variable 

– Directed edge =  
  conditional dependency 

 Node independent of its non-
descendants given its parents  
e.g. (WetGrass ⫫ Cloudy) | (Sprinkler, Rain) 

 Widely-used model in Machine Learning 
for Fault diagnosis, Cybersecurity Weather Bayesian Network 

Cloudy 

Sprinkler Rain 

WetGrass 

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html 
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Conditional Probability Distribution (CPD) 

Parameters of the Bayesian network can be viewed as a set of 
tables, one table per variable 
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Goal: Learn Bayesian Network Parameters 

S R P(W=T) P(W=F) 

T T 
99/100 
= 0.99 

0.01 

T F 0.9 0.1 

F T 0.9 0.1 

F F 0.0 1.0 

S R W=T W=F Total 

T T 99 1 100 

T F 9 1 10 

F T 45 5 50 

F F 0 10 10 

Sprinkler Rain 

WetGrass 

𝑃𝑟 𝑊  𝑆, 𝑅] =  
Pr [𝑊, 𝑆, 𝑅]

Pr [𝑆, 𝑅]
=  

𝐹𝑟𝑒𝑞(𝑊, 𝑆, 𝑅)

𝐹𝑟𝑒𝑞(𝑆, 𝑅)
 

Counter Table of WetGrass 
CPD of WetGrass 

Joint Counter Parent Counter 

The Maximum Likelihood Estimator (MLE) uses 
empirical conditional probabilities 
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Distributed Bayesian Network Learning 

Parameters changing with new stream instance 
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Naïve Solution: Exact Counting (Exact MLE) 

 Each arriving event at a site sends a message to a coordinator 

– Updates counters corresponding to all the value combinations 
from the event 

 Total communication is proportional to the number of events 

– Can we reduce this?  

 Observation: we can tolerate some error in counts 

– Small changes in large enough counts won’t affect probabilities 

– Some error already from variation in what order events happen 

 Replace exact counters with approximate counters 

– A foundational distributed question: how to count approximately? 
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Distributed Approximate Counting 

 We have k sites, each site runs the same algorithm: 

– For each increment of a site’s counter: 

 Report the new count n’i with probability p 

– Estimate ni as n’i – 1 + 1/p if n’i > 0, else estimate as 0 

 Estimator is unbiased, and has variance less than 1/p2 

 Global count n estimated by sum of the estimates ni 

 How to set p to give an overall guarantee of accuracy? 

– Ideally, set p to √(k log 1/δ)/εn to get εn error with probability 1-δ 

– Work with a coarse approximation of n up to a factor of 2 

 Start with p=1 but decrease it when needed 

– Coordinator broadcasts to halve p when estimate of n doubles 

– Communication cost is proportional to O(k log(n) + √k/ε ) 
30 
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Challenge in Using Approximate Counters 

How to set the approximation parameters for learning Bayes nets? 
 

1. Requirement: maintain an accurate model  
(i.e. give accurate estimates of probabilities) 

𝑒−𝜖 ≤ 
𝑃 (𝒙)

𝑃 𝒙
≤ 𝑒𝜖 

where:  
𝜖 is the global error budget,  
𝒙 is the given any instance vector,  
𝑃 (𝒙) is the joint probability using approximate algorithm,  
𝑃 𝒙  is the joint probability using exact counting (MLE) 
 

2. Objective: minimize the communication cost of model maintenance 

We have freedom to find different schemes to meet these requirements 
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𝜖 −Approximation to the MLE 

 Expressing joint probability in terms of the counters: 

         𝑃 𝒙 =  
𝐶(𝑋𝑖,𝑝𝑎𝑟(𝑋𝑖))

𝐶(𝑝𝑎𝑟(𝑋𝑖))
𝒏
𝒊=𝟏             𝑃 𝒙 =  

𝐴(𝑋𝑖,𝑝𝑎𝑟(𝑋𝑖))

𝐴(𝑝𝑎𝑟(𝑋𝑖))
𝒏
𝒊=𝟏  

where:   

 𝐴 is the approximate counter 

 𝐶 is the exact counter 

 𝑝𝑎𝑟 𝑋𝑖  are the parents of variable 𝑋𝑖  

 Define local approximation factors as:  

– 𝛼𝑖: approximation error of counter 𝐴(𝑋𝑖 , 𝑝𝑎𝑟(𝑋𝑖)) 

– 𝛽𝑖: approximation error of parent counter 𝐴(𝑝𝑎𝑟(𝑋𝑖)) 

 To achieve an 𝜖-approximation to the MLE we need: 

                                          𝑒−𝜖 ≤  (1 ± 𝛼𝑖) ⋅ (1 ± 𝛽𝑖)
𝑛
𝑖=1  ≤ 𝑒𝜖 
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Algorithm choices 

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]: 

 Baseline algorithm: divide error budgets uniformly across all 
counters, αi, βi ∝ ε/n 

 Uniform algorithm: analyze total error of estimate via variance, 
rather than separately, so αi, βi ∝ ε/√n 

 Non-uniform algorithm: calibrate error based on cardinality of 
attributes (Ji) and parents (Ki), by applying optimization problem 
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Algorithms Result Summary 

Algorithm 
Approx. Factor of 

Counters 
Communication 
Cost (messages) 

Exact MLE None (exact counting) 𝑂(𝑚𝑛) 

Baseline 𝑂(𝜖/𝑛) 𝑂 𝑛2 ⋅ log𝑚 / 𝜖  

Uniform 𝑂(𝜖/ 𝑛) 𝑂 𝑛1.5 ⋅ log𝑚 / 𝜖  

Non-uniform 𝑂 𝜖 ⋅  
𝐽𝑖
1/3

𝐾𝑖
1/3

𝛼
, 𝑂 𝜖 ⋅  

𝐾𝑖
1/3

𝛽
 at most Uniform 

𝜖: error budget, 𝑛: number of variables, 𝑚: total number of observations 
𝐽𝑖: cardinality of variable 𝑋𝑖, 𝐾𝑖: cardinality of 𝑋𝑖’s parents 

𝛼 is a polynomial function of 𝐽𝑖 and 𝐾𝑖 , 𝛽 is a polynomial function of 𝐾𝑖 
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Empirical Accuracy 

error to ground truth vs. training instances 
(number of sites: 30, error budget: 0.1) 

real world Bayesian networks Alarm (small), Hepar II (medium) 
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Communication Cost (training time) 

training time vs. number of sites  
(500K training instances, error budget: 0.1) 

time cost (communication bound) on AWS cluster 

36 



Conclusions 

 Communication-Efficient Algorithms to maintaining a 
provably good approximation for a Bayesian Network 

 Non-Uniform approach is (marginally) the best, and adapts to 
the structure of the Bayesian network  

 Experiments show reduced communication and similar 
prediction errors as the exact model 

 Algorithms can be extended to perform classification and 
other ML tasks 

 Open problems: extend to richer models, learning the graph 

37 



2. Sketching for Constrained Regression 

 Linear algebra computations are key to much machine learning 
 We seek efficient scalable linear algebra approximate solutions 

making use of sketching algorithms (random projections) 
– We find efficient approximate algorithms for constrained 

regression 
– We show new approaches based on sketching which are fast and 

accurate 
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Constrained Least Squares Regression 

 Regression: Input is 𝐴 ∈  ℝ𝑛 ×𝑑 and target vector 𝑏 ∈ ℝ𝑛 

– Least Squares formulation: find 𝑥 = argmin ‖𝐴𝑥 − 𝑏 ‖2 

– Takes time 𝑂 𝑛𝑑2  centralized to solve via normal equations 

 Can be approximated via reducing dependency on 𝑛 by 
compressing into columns of length roughly 𝑑/𝜖2 (JLT) 

– Can be performed distributed with some restrictions 

 Constrained regression imposes additional constraints:  

– x must lie within a (convex) set C 

– Good solution methods via convex optimization, with a time cost 
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Regression via Sketching 

 Sketch-and-solve paradigm: solve x’ = argminx ∈ C ‖S(Ax-b)‖2 

– Find the x that seems to solve the problem under sketch matrix S 

– Can prove that it finds ‖Ax’ – b‖2 ≤ (1+ε) ‖AxOPT – b‖2 

i.e. a solution whose cost is near optimal 

– However, does not guarantee to approximate vector xOPT itself 

 Iterative Hessian Sketch [Pilanci&Wainwright 16]: iterate to solve 

– xt+1 = argminx ∈ C  ½‖(St+1A)(x - xt) ‖2  – 〈AT(b - Axt), x - xt〉 

– Use fresh sketches (S1, S2, S3…) to move towards the solution 

– Faster than exact solution since (SA) is much smaller than A 

– Will find an x’ that is close to xOPT 
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Instantiating IHS 

 Iterative Hessian Sketch imposes some requirements on sketch 

– Subgaussianity: E[SST] is a scaled identity, and rows of the sketch do 
not stretch arbitrary vectors with high probability 

– Spectral bound: E[ST(SST)-1S] is bounded by a scaled identity 

 Several sketches are known to meet these conditions: 

– (Dense) Gaussian sketches: entries are IID Gaussian 

– Subsampled Randomized Hadamard Transform (SRHT): composition 
of a sampling and sign-flipping with the Hadamard transform 

 We show that CountSketch also works [Cormode, Dickens 19]  

– Not every step of IHS will preserve all directions,  
but with sufficient iterations, we converge 

– CountSketch is fast(er) when the input is sparse 
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Experimental Study 

 We evaluate LASSO regression with regularization parameter λ:  
xOPT = argminx in Rᵈ ½ ‖Ax-b‖2

2 + λ‖x‖1 

 We evaluate on synthetic and real data:  

– YearPredictionsMSD: 515K x 91, fully dense 

– Slice: 53K x 387, 0.36 dense 

– w8a: 50K x 301, 0.042 dense 

 Main parameter is how big to make the sketches? 

– We consider multiples of the input dimension, d: 4d to 10d 
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IHS with iterations for LASSO 

 All sketch methods converge to a common error level after 
sufficiently many iterations on synthetic data 

 Number of iterations is only part of the story: not all 
iterations are equal(ly fast) 
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IHS accuracy versus time for LASSO 

 CountSketch approach shows rapid convergence to 
approximate solution 

 Larger sketch achieves better error in same time 

 CountSketch performs well across different datasets with 
differing sparsity levels 
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Current Directions in Data Summarization 

 Sparse representations of high dimensional objects 

– Compressed sensing, sparse fast fourier transform 

 General purpose numerical linear algebra for (large) matrices 

– k-rank approximation, regression, PCA, SVD, eigenvalues 

 Summaries to verify full calculation: a ‘checksum for computation’ 

 Geometric (big) data: coresets, clustering, machine learning 

 Use of summaries in large-scale, distributed computation 

– Build them in MapReduce, Continuous Distributed models 

 Summaries with privacy to compactly gather accurate data:  
extra randomization is used to hide personal information 
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 There are two approaches in response to growing data sizes 

– Scale the computation up; scale the data down 

 Summarization can be a useful tool in machine learning 

– Allows approximate solutions over distributed data 

 Many open problems in this broad area 

– Machine learning/linear algebra a rich source of problems 

Final Summary 
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