
Data Summarization
for

Machine Learning

Graham Cormode

University of Warwick

G.Cormode@Warwick.ac.uk

The case for “Big Data” in one slide

 “Big” data arises in many forms:

– Medical data: genetic sequences, time series

– Activity data: GPS location, social network activity

– Business data: customer behavior tracking at fine detail

– Physical Measurements: from science (physics, astronomy)

 Common themes:

– Data is large, and growing

– There are important patterns and trends in the data

– We want to (efficiently) find patterns and make predictions

 “Big data” is about more than simply the volume of the data

– But large datasets present a particular challenge for us!

2

Computational scalability

 The first (prevailing) approach: scale up the computation

 Many great technical ideas:

– Use many cheap commodity devices

– Accept and tolerate failure

– Move code to data, not vice-versa

– MapReduce: BSP for programmers

– Break problem into many small pieces

– Add layers of abstraction to build massive DBMSs and warehouses

– Decide which constraints to drop: noSQL, BASE systems

 Scaling up comes with its disadvantages:

– Expensive (hardware, equipment, energy), still not always fast

 This talk is not about this approach!
3

Downsizing data

 A second approach to computational scalability:
scale down the data!

– A compact representation of a large data set

– Capable of being analyzed on a single machine

– What we finally want is small: human readable analysis / decisions

– Necessarily gives up some accuracy: approximate answers

– Often randomized (small constant probability of error)

– Much relevant work: samples, histograms, wavelet transforms

 Complementary to the first approach: not a case of either-or

 Some drawbacks:

– Not a general purpose approach: need to fit the problem

– Some computations don’t allow any useful summary
4

Outline for the talk

 Part 1: Few examples of compact summaries (no proofs)

– Sketches: Bloom filter, Count-Min, AMS

– Sampling: count distinct, distinct sampling

– Summaries for more complex objects: graphs and matrices

 Part 2: Some recent work on summaries for ML tasks

– Distributed construction of Bayesian models

– Approximate constrained regression via sketching

5

6

Summary Construction

 A ‘summary’ is a small data structure, constructed incrementally

– Usually giving approximate, randomized answers to queries

 Key methods for summaries:

– Create an empty summary

– Update with one new tuple: streaming processing

– Merge summaries together: distributed processing (eg MapR)

– Query: may tolerate some approximation (parameterized by ε)

 Several important cost metrics (as function of ε, n):

– Size of summary, time cost of each operation

Bloom Filters

 Bloom filters [Bloom 1970] compactly encode set membership

– E.g. store a list of many long URLs compactly

– k hash functions map items to m-bit vector k times

– Update: Set all k entries to 1 to indicate item is present

– Query: Can lookup items, store set of size n in O(n) bits

 Analysis: choose k and size m to obtain small false positive prob

 Duplicate insertions do not change Bloom filters

 Can be merge by OR-ing vectors (of same size)

item

1 1 1

7

Bloom Filters Applications

 Bloom Filters widely used in “big data” applications

– Many problems require storing a large set of items

 Can generalize to allow deletions

– Swap bits for counters: increment on insert, decrement on delete

– If representing sets, small counters suffice: 4 bits per counter

– If representing multisets, obtain (counting) sketches

 Bloom Filters are an active research area

– Several papers on topic in every networking conference…

item

1 1 1
8

Count-Min Sketch

 Count Min sketch [C, Muthukrishnan 04] encodes item counts

– Allows estimation of frequencies (e.g. for selectivity estimation)

– Some similarities in appearance to Bloom filters

 Model input data as a vector x of dimension U

– Create a small summary as an array of w  d in size

– Use d hash function to map vector entries to [1..w]

W

d
Array:

CM[i,j]

9

Count-Min Sketch Structure

 Update: each entry in vector x is mapped to one bucket per row.

 Merge two sketches by entry-wise summation

 Query: estimate x[j] by taking mink CM[k,hk(j)]
– Guarantees error less than e‖x‖1 in size O(1/e)

– Probability of more error reduced by adding more rows

+c

+c

+c

+c

h1(j)

hd(j)

j,+c

d
 ro

w
s

w = 2/e

10

Generalization: Sketch Structures

 Sketch is a class of summary that is a linear transform of input

– Sketch(x) = Sx for some matrix S

– Hence, Sketch(x + y) =  Sketch(x) +  Sketch(y)

– Trivial to update and merge

 Often describe S in terms of hash functions

– S must have compact description to be worthwhile

– If hash functions are simple, sketch is fast

 Analysis relies on properties of the hash functions

– Seek “limited independence” to limit space usage

– Proofs usually study the expectation and variance of the estimates

11

Sketching for Euclidean norm

 AMS sketch presented in [Alon Matias Szegedy 96]

– Allows estimation of F2 (second frequency moment) aka ‖x‖2
2

– Leads to estimation of (self) join sizes, inner products

– Used at the heart of many streaming and non-streaming applications:
achieves dimensionality reduction (‘Johnson-Lindenstrauss lemma’)

 Here, describe the related CountSketch by generalizing CM sketch

– Use extra hash functions g1...gd {1...U} {+1,-1}

– Now, given update (j,+c), set CM[k,hk(j)] += c*gk(j)

 Estimate squared Euclidean norm (F2) = mediank i CM[k,i]2

– Intuition: gk hash values cause ‘cross-terms’ to cancel out, on average

– The analysis formalizes this intuition

– median reduces chance of large error

 12

+c*g1(j)

+c*g2(j)

+c*g3(j)

+c*g4(j)

h1(j)

hd(j)

j,+c

L0 Sampling

 L0 sampling: sample item i with prob (1±e) fi
0/F0 (# distinct items)

– i.e., sample (near) uniformly from items with non-zero frequency

– Challenging when frequencies can increase and decrease

 General approach: [Frahling, Indyk, Sohler 05, C., Muthu, Rozenbaum 05]

– Sub-sample all items (present or not) with probability p

– Generate a sub-sampled vector of frequencies fp

– Feed fp to a k-sparse recovery data structure (sketch summary)

 Allows reconstruction of fp if F0 < k, uses space O(k)

– If fp is k-sparse, sample from reconstructed vector

– Repeat in parallel for exponentially shrinking values of p

13

Sampling Process

 Exponential set of probabilities, p=1, ½, ¼, 1/8, 1/16… 1/U

– Want there to be a level where k-sparse recovery will succeed

 Sub-sketch that can decode a vector if it has few non-zeros

– At level p, expected number of items selected S is pF0

– Pick level p so that k/3 < pF0  2k/3

 Analysis: this is very likely to succeed and sample correctly

p=1

p=1/U

k-sparse recovery

14

Graph Sketching

 Given L0 sampler, use to sketch (undirected) graph properties

 Connectivity: find the connected components of the graph

 Basic alg: repeatedly contract edges between components

– Implement: Use L0 sampling to get edges from vector of adjacencies

– One sketch for the adjacency list for each node

 Problem: as components grow, sampling edges from components
most likely to produce internal links

15

Graph Sketching

 Idea: use clever encoding of edges [Ahn, Guha, McGregor 12]

 Encode edge (i,j) as ((i,j),+1) for node i<j, as ((i,j),-1) for node j>i

 When node i and node j get merged, sum their L0 sketches

– Contribution of edge (i,j) exactly cancels out

– Only non-internal edges remain in the L0 sketches

 Use independent sketches for each iteration of the algorithm

– Only need O(log n) rounds with high probability

 Result: O(poly-log n) space per node for connected components

i j
+

=

16

Matrix Sketching

 Given matrices A, B, want to approximate matrix product AB

– Measure the normed error of approximation C: ǁAB – Cǁ

 Main results for the Frobenius (entrywise) norm ǁǁF

– ǁCǁF = (i,j Ci,j
2)½

– Results rely on sketches, so this entrywise norm is most natural

17

Direct Application of Sketches

 Build AMS sketch of each row of A (Ai), each column of B (Bj)

 Estimate Ci,j by estimating inner product of Ai with Bj

– Absolute error in estimate is e ǁAiǁ2 ǁBjǁ2 (whp)

– Sum over all entries in matrix, Frobenius error is eǁAǁFǁBǁF

 Outline formalized & improved by Clarkson & Woodruff [09,13]

– Improve running time to linear in number of non-zeros in A,B

18

More Linear Algebra

 Matrix multiplication improvement: use more powerful hash fns

– Obtain a single accurate estimate with high probability

 Linear regression given matrix A and vector b:
 find x  Rd to (approximately) solve minx ǁAx – bǁ

– Approach: solve the minimization in “sketch space”

– From a summary of size O(d2/e) [independent of rows of A]

 Frequent directions: approximate matrix-vector product
[Ghashami, Liberty, Phillips, Woodruff 15]

– Use the SVD to (incrementally) summarize matrices

 The relevant sketches can be built quickly: proportional to the
number of nonzeros in the matrices (input sparsity)

– Survey: Sketching as a tool for linear algebra [Woodruff 14]

 19

20

Lower Bounds

 While there are many examples of things we can summarize…

– What about things we can’t do?

– What’s the best we could achieve for things we can do?

 Lower bounds for summaries from communication complexity

– Treat the summary as a message that can be sent between players

 Basic principle: summaries must be proportional to the size of the
information they carry

– A summary encoding N bits of data must be at least N bits in size!

 1 0 1 1 1 0 1 0 1 …

Alice

Bob

Part 2:
Applications in Machine Learning

1. Distributed Streaming Machine Learning

Network

Machine Learning Model

Observation
Streams

 Data continuously generated across distributed sites
 Maintain a model of data that enables predictions
 Communication-efficient algorithms are needed!

22

23

Continuous Distributed Model

 Site-site communication only changes things by factor 2

 Goal: Coordinator continuously tracks (global) function of streams

– Achieve communication poly(k, 1/e, log n)

– Also bound space used by each site, time to process each update

Coordinator

k sites

local stream(s)
seen at each site

S1 Sk

Track f(S1,…,Sk)

24

Challenges

 Monitoring is Continuous…

– Real-time tracking, rather than one-shot query/response

 …Distributed…

– Each remote site only observes part of the global stream(s)

– Communication constraints: must minimize monitoring burden

 …Streaming…

– Each site sees a high-speed local data stream and can be resource
(CPU/memory) constrained

 …Holistic…

– Challenge is to monitor the complete global data distribution

– Simple aggregates (e.g., aggregate traffic) are easier

Graphical Model: Bayesian Network

 Succinct representation of a joint
distribution of random variables

 Represented as a Directed Acyclic Graph

– Node = a random variable

– Directed edge =
 conditional dependency

 Node independent of its non-
descendants given its parents
e.g. (WetGrass ⫫ Cloudy) | (Sprinkler, Rain)

 Widely-used model in Machine Learning
for Fault diagnosis, Cybersecurity Weather Bayesian Network

Cloudy

Sprinkler Rain

WetGrass

https://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

25

Conditional Probability Distribution (CPD)

Parameters of the Bayesian network can be viewed as a set of
tables, one table per variable

26

Goal: Learn Bayesian Network Parameters

S R P(W=T) P(W=F)

T T
99/100
= 0.99

0.01

T F 0.9 0.1

F T 0.9 0.1

F F 0.0 1.0

S R W=T W=F Total

T T 99 1 100

T F 9 1 10

F T 45 5 50

F F 0 10 10

Sprinkler Rain

WetGrass

𝑃𝑟 𝑊 𝑆, 𝑅] =
Pr [𝑊, 𝑆, 𝑅]

Pr [𝑆, 𝑅]
=

𝐹𝑟𝑒𝑞(𝑊, 𝑆, 𝑅)

𝐹𝑟𝑒𝑞(𝑆, 𝑅)

Counter Table of WetGrass
CPD of WetGrass

Joint Counter Parent Counter

The Maximum Likelihood Estimator (MLE) uses
empirical conditional probabilities

27

Distributed Bayesian Network Learning

Parameters changing with new stream instance

28

Naïve Solution: Exact Counting (Exact MLE)

 Each arriving event at a site sends a message to a coordinator

– Updates counters corresponding to all the value combinations
from the event

 Total communication is proportional to the number of events

– Can we reduce this?

 Observation: we can tolerate some error in counts

– Small changes in large enough counts won’t affect probabilities

– Some error already from variation in what order events happen

 Replace exact counters with approximate counters

– A foundational distributed question: how to count approximately?

29

Distributed Approximate Counting

 We have k sites, each site runs the same algorithm:

– For each increment of a site’s counter:

 Report the new count n’i with probability p

– Estimate ni as n’i – 1 + 1/p if n’i > 0, else estimate as 0

 Estimator is unbiased, and has variance less than 1/p2

 Global count n estimated by sum of the estimates ni

 How to set p to give an overall guarantee of accuracy?

– Ideally, set p to √(k log 1/δ)/εn to get εn error with probability 1-δ

– Work with a coarse approximation of n up to a factor of 2

 Start with p=1 but decrease it when needed

– Coordinator broadcasts to halve p when estimate of n doubles

– Communication cost is proportional to O(k log(n) + √k/ε)
30

[Huang, Yi, Zhang PODS’12]

Challenge in Using Approximate Counters

How to set the approximation parameters for learning Bayes nets?

1. Requirement: maintain an accurate model
(i.e. give accurate estimates of probabilities)

𝑒−𝜖 ≤
𝑃 (𝒙)

𝑃 𝒙
≤ 𝑒𝜖

where:
𝜖 is the global error budget,
𝒙 is the given any instance vector,
𝑃 (𝒙) is the joint probability using approximate algorithm,
𝑃 𝒙 is the joint probability using exact counting (MLE)

2. Objective: minimize the communication cost of model maintenance

We have freedom to find different schemes to meet these requirements

31

𝜖 −Approximation to the MLE

 Expressing joint probability in terms of the counters:

 𝑃 𝒙 =
𝐶(𝑋𝑖,𝑝𝑎𝑟(𝑋𝑖))

𝐶(𝑝𝑎𝑟(𝑋𝑖))
𝒏
𝒊=𝟏 𝑃 𝒙 =

𝐴(𝑋𝑖,𝑝𝑎𝑟(𝑋𝑖))

𝐴(𝑝𝑎𝑟(𝑋𝑖))
𝒏
𝒊=𝟏

where:

 𝐴 is the approximate counter

 𝐶 is the exact counter

 𝑝𝑎𝑟 𝑋𝑖 are the parents of variable 𝑋𝑖

 Define local approximation factors as:

– 𝛼𝑖: approximation error of counter 𝐴(𝑋𝑖 , 𝑝𝑎𝑟(𝑋𝑖))

– 𝛽𝑖: approximation error of parent counter 𝐴(𝑝𝑎𝑟(𝑋𝑖))

 To achieve an 𝜖-approximation to the MLE we need:

 𝑒−𝜖 ≤ (1 ± 𝛼𝑖) ⋅ (1 ± 𝛽𝑖)
𝑛
𝑖=1 ≤ 𝑒𝜖

32

Algorithm choices

We proposed three algorithms [C, Tirthapura, Yu ICDE 2018]:

 Baseline algorithm: divide error budgets uniformly across all
counters, αi, βi ∝ ε/n

 Uniform algorithm: analyze total error of estimate via variance,
rather than separately, so αi, βi ∝ ε/√n

 Non-uniform algorithm: calibrate error based on cardinality of
attributes (Ji) and parents (Ki), by applying optimization problem

33

Algorithms Result Summary

Algorithm
Approx. Factor of

Counters
Communication
Cost (messages)

Exact MLE None (exact counting) 𝑂(𝑚𝑛)

Baseline 𝑂(𝜖/𝑛) 𝑂 𝑛2 ⋅ log𝑚 / 𝜖

Uniform 𝑂(𝜖/ 𝑛) 𝑂 𝑛1.5 ⋅ log𝑚 / 𝜖

Non-uniform 𝑂 𝜖 ⋅
𝐽𝑖
1/3

𝐾𝑖
1/3

𝛼
, 𝑂 𝜖 ⋅

𝐾𝑖
1/3

𝛽
 at most Uniform

𝜖: error budget, 𝑛: number of variables, 𝑚: total number of observations
𝐽𝑖: cardinality of variable 𝑋𝑖, 𝐾𝑖: cardinality of 𝑋𝑖’s parents

𝛼 is a polynomial function of 𝐽𝑖 and 𝐾𝑖 , 𝛽 is a polynomial function of 𝐾𝑖

34

Empirical Accuracy

error to ground truth vs. training instances
(number of sites: 30, error budget: 0.1)

real world Bayesian networks Alarm (small), Hepar II (medium)

35

Communication Cost (training time)

training time vs. number of sites
(500K training instances, error budget: 0.1)

time cost (communication bound) on AWS cluster

36

Conclusions

 Communication-Efficient Algorithms to maintaining a
provably good approximation for a Bayesian Network

 Non-Uniform approach is (marginally) the best, and adapts to
the structure of the Bayesian network

 Experiments show reduced communication and similar
prediction errors as the exact model

 Algorithms can be extended to perform classification and
other ML tasks

 Open problems: extend to richer models, learning the graph

37

2. Sketching for Constrained Regression

 Linear algebra computations are key to much machine learning
 We seek efficient scalable linear algebra approximate solutions

making use of sketching algorithms (random projections)
– We find efficient approximate algorithms for constrained

regression
– We show new approaches based on sketching which are fast and

accurate

38

Constrained Least Squares Regression

 Regression: Input is 𝐴 ∈ ℝ𝑛 ×𝑑 and target vector 𝑏 ∈ ℝ𝑛

– Least Squares formulation: find 𝑥 = argmin ‖𝐴𝑥 − 𝑏 ‖2

– Takes time 𝑂 𝑛𝑑2 centralized to solve via normal equations

 Can be approximated via reducing dependency on 𝑛 by
compressing into columns of length roughly 𝑑/𝜖2 (JLT)

– Can be performed distributed with some restrictions

 Constrained regression imposes additional constraints:

– x must lie within a (convex) set C

– Good solution methods via convex optimization, with a time cost

39

Regression via Sketching

 Sketch-and-solve paradigm: solve x’ = argminx ∈ C ‖S(Ax-b)‖2

– Find the x that seems to solve the problem under sketch matrix S

– Can prove that it finds ‖Ax’ – b‖2 ≤ (1+ε) ‖AxOPT – b‖2

i.e. a solution whose cost is near optimal

– However, does not guarantee to approximate vector xOPT itself

 Iterative Hessian Sketch [Pilanci&Wainwright 16]: iterate to solve

– xt+1 = argminx ∈ C ½‖(St+1A)(x - xt) ‖2 – 〈AT(b - Axt), x - xt〉

– Use fresh sketches (S1, S2, S3…) to move towards the solution

– Faster than exact solution since (SA) is much smaller than A

– Will find an x’ that is close to xOPT

40

Instantiating IHS

 Iterative Hessian Sketch imposes some requirements on sketch

– Subgaussianity: E[SST] is a scaled identity, and rows of the sketch do
not stretch arbitrary vectors with high probability

– Spectral bound: E[ST(SST)-1S] is bounded by a scaled identity

 Several sketches are known to meet these conditions:

– (Dense) Gaussian sketches: entries are IID Gaussian

– Subsampled Randomized Hadamard Transform (SRHT): composition
of a sampling and sign-flipping with the Hadamard transform

 We show that CountSketch also works [Cormode, Dickens 19]

– Not every step of IHS will preserve all directions,
but with sufficient iterations, we converge

– CountSketch is fast(er) when the input is sparse

41

Experimental Study

 We evaluate LASSO regression with regularization parameter λ:
xOPT = argminx in Rᵈ ½ ‖Ax-b‖2

2 + λ‖x‖1

 We evaluate on synthetic and real data:

– YearPredictionsMSD: 515K x 91, fully dense

– Slice: 53K x 387, 0.36 dense

– w8a: 50K x 301, 0.042 dense

 Main parameter is how big to make the sketches?

– We consider multiples of the input dimension, d: 4d to 10d

42

IHS with iterations for LASSO

 All sketch methods converge to a common error level after
sufficiently many iterations on synthetic data

 Number of iterations is only part of the story: not all
iterations are equal(ly fast)

43

IHS accuracy versus time for LASSO

 CountSketch approach shows rapid convergence to
approximate solution

 Larger sketch achieves better error in same time

 CountSketch performs well across different datasets with
differing sparsity levels

44

Current Directions in Data Summarization

 Sparse representations of high dimensional objects

– Compressed sensing, sparse fast fourier transform

 General purpose numerical linear algebra for (large) matrices

– k-rank approximation, regression, PCA, SVD, eigenvalues

 Summaries to verify full calculation: a ‘checksum for computation’

 Geometric (big) data: coresets, clustering, machine learning

 Use of summaries in large-scale, distributed computation

– Build them in MapReduce, Continuous Distributed models

 Summaries with privacy to compactly gather accurate data:
extra randomization is used to hide personal information

45

 There are two approaches in response to growing data sizes

– Scale the computation up; scale the data down

 Summarization can be a useful tool in machine learning

– Allows approximate solutions over distributed data

 Many open problems in this broad area

– Machine learning/linear algebra a rich source of problems

Final Summary

46

