
Modern Sat Solving
CDCL Tutorial

Singapore Winter School 2019
Fahiem Bacchus, University of Toronto

Fahiem Bacchus, University of Toronto2

Why Sat solving?

Practical
Problem A
that lies in NP

Encoding to SAT Well engineered
SAT Solver

Solution to SAT
problem

Decoding

Solution to A
without

having to
build a
special
purpose
solver!

Fahiem Bacchus, University of Toronto3

Why Sat Solving?
} Can this approach be successful?
} Yes, we can solve many practical problems with this approach.
} Evidence with modern SAT solvers indicate that in fact this

approach can sometimes offer significant performance
improvements over developing problem specific software.

} In fact this approach can be successful for other complexity
classes
} Later we will discuss solvers for MaxSat which is problem complete for

the class FPNP (the set of problems that be solved in polynomial time
given access to an NP oracle).

Fahiem Bacchus, University of Toronto4

Conjunctive Normal Form
Modern SAT solvers work with propositional formulas expressed
in Conjunctive Normal Form (CNF)

CNF: a conjunction of clauses, each of which is a disjunction of
literals, each of which is either a propositional variable or the
negation of a propositional variable.

(p1 Ú ¬p2 Ú p3) Ù (p2 Ú ¬p5) Ù (p2 Ú ¬p6) Ù (p4 Ú p5) Ù (¬p3)

We typically write this in abbreviated form:

(p1 , ¬p2, p3)(p2, ¬p5)(p2, ¬p6)(p4, p5)(¬p3)

Fahiem Bacchus, University of Toronto5

Semantics
Truth Assignments (Models)

1. Truth assignment p: map each propositional variable to
True/False (0,1)

pi à {0, 1}
2. p(¬p) = 1 if p(p) = 0

= 0 if p(p) = 1
3. p(c) = 1 if p(l) = 1 for at least one literals l ∈ c

= 0 otherwise

p(F) = 1 if p(c) = 1 for all clauses c ∈ F

Fahiem Bacchus, University of Toronto6

Satisfiability
CNF Formula F

F is satisfiable if there exists a truth assignment p such that
p(F) = 1. Unsatisfiable otherwise.

Written as p ⊧	F

f is a logical consequence of F if for all truth assignment p
such that p ⊧	F we have that p ⊧	f

Written as F ⊧	f

Fahiem Bacchus, University of Toronto7

Obvious simplifications
1. A clause with clashing literals in it is true under any truth

assignment. Such clauses are called tautological. Such
clauses can be removed from the CNF

2. Duplicate literals are irrelevant and can be removed
3. We say that a clause c is subsumed by another clause c’ if c’

is a subset of c
} Any truth assignment that satisfies c must also satisfy c’
} Subsumed clauses can be removed from the CNF

Fahiem Bacchus, University of Toronto8

Some Observations
Notes:
1. Each clause serves to eliminate some set of truth

assignments (i.e., these truth assignments cannot be models
of the CNF.
} E.g., (a, b, ¬c) eliminates all truth assignments p such that

p(a) = 0, p(b) = 0, and p(c) = 1
} Shorter clauses eliminate more truth assignments

2. By convention no truth assignment satisfies the empty clause
‘()’

3. Satisfiability is NP complete

Fahiem Bacchus, University of Toronto9

CSC2512: CNF
CNF

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1

1 1 0 0

1 1 1
(a)

(-a, c)
Determining if there is a one anywhere (satisfiable) for F
becomes combinatorial as each clause makes a
different set of truth assignments unsatisfying.

Fahiem Bacchus, University of Toronto10

Converting to CNF
Any propositional formula can be converted to CNF with no
more than a polynomial increase in size by introducing new
variables (Tseitin 1970)

If we don’t introduce new variables—we can have an
exponential increase in the size of the formula.

Fahiem Bacchus, University of Toronto11

Encodings
Encodings: CNF is not a natural language for most applications.
Various domains have different “standard” languages.

} Automated Planning: STRIPS or ADL actions specified with
first-order variables

} Hardware: Circuits
} Software: Various specification languages (logics with

extensions).

Specialized techniques have also been developed to encode
problems expressed in these languages in CNF. The encoding
used can have a tremendous impact on how easy it is to solve
the CNF.

Fahiem Bacchus, University of Toronto12

Resolution
Reasoning with CNF
CNF is used in modern SAT solvers mainly because there is a
very simple reasoning rule that can be efficiently implemented.

Definition: Resolution
Two clauses with a single clashing literal can be resolved:

R[(A, x), (B, -x)] = (A,B)

(where A and B are sets of literals). We assume that duplicate
literals are removed.

} If A and B have more than one clashing pair of literals the
result will be a tautology

Fahiem Bacchus, University of Toronto13

Resolution
Resolution is sound: Any truth assignment that satisfies c and
c’ must satisfy R[c,c’].

That is resolution generates logical consequences.

if p ⊧	c	∧	c’	then p ⊧	R[c,c’]

Fahiem Bacchus, University of Toronto14

Resolution Refutations
A Resolution Proof of a clause cn from a CNF F

A sequence of clauses c1, c2, …, cn such that:

1.Each ci is either
1. A member of the set of clauses F
2. or was derived by a resolution step from two prior clauses in the

sequence cj and ck (j, k < i)

The sequence can also be represented as a DAG (directed
acyclic graph).

Fahiem Bacchus, University of Toronto15

Resolution Proofs
C = {(a, b) (-a, c) (-b, d) (-c, -d, e, f)}

There is a resolution proof of (a, b, e, f) from C:

(a, b), (-a, c), (c, b), (-b, d), (a, d), (-c, -d, e, f) (-c, a, e, f)
(a, b, e, f)

(a,b)
(-a,c)

(c,b)

(-b,d)

(a,d)

(-c, -d, e, f)

(-c, a, e, f)

(a, b, e, f)

Fahiem Bacchus, University of Toronto16

Resolution Refutations
Definition: Resolution Refutation of a CNF F is a resolution
proof of the empty clause ‘()’ from F.

From soundness, any truth assignment satisfying F must satisfy
the empty clause, but no truth assignment satisfies the empty
clause è A refutation proves that F is unsatisfiable

Fahiem Bacchus, University of Toronto17

Resolution Refutations
Resolution is Refutation Complete:
If F is unsatisfiable there exists a resolution refutation of C.

Equivalently if F ⊧	f then we can derive the empty clause from
F ∧	¬f using resolution.

Fahiem Bacchus, University of Toronto, 18

DLL (DPLL)
Davis, Logemann and Loveland [1962] introduced a procedure
for solving SAT based on backtracking. (Became commonly
known as DPLL)

Modern Conflict Directed Clause Learning (CDCL) algorithms
can be viewed as generalizations of DPLL

Fahiem Bacchus, University of Toronto, 19

DPLL
DPLL(p, F) // Initially F is the input formula.

p is an empty set of literals (truth assignment)
If F is empty

return (SAT,p) (p is a satisfying assignment)
If F contains an empty clause

return (UNSAT,∅)
else choose a variable v in F //Prefer a v appearing

//in a unit clause if one exists
F’ = F|v //Reduce F
(SAT?,p’) = DPLL(p + v, F’)

if SAT? == SAT return (SAT,p’)
F’ = F|-v
return DPLL(p + -v, F’)

Fahiem Bacchus, University of Toronto, 20

DPLL
Reduction:

F|l F reduced by literal l

Remove all clauses of F that contain l
(they are satisfied)

Remove –l from all remaining clauses
(-l can no longer satisfy them)

{(a, b, -d), (d, c, e), (g, h, e)}|-d
= {(c, e), (g, h, e)}

Fahiem Bacchus, University of Toronto, 21

DPLL
Example:
F = (¬x, r), (¬y, r), (x, z), (y, z), (x, y), (¬x, ¬y), (¬z, ¬r)

(x,y) (¬x,r)

¬x

¬y y

(¬y,r)

¬r r

(x,z)

¬z z

(¬r,¬z)

x

¬r r

¬z

(¬r,¬z)

z

(y,z)

¬y y

(¬x,¬y)

Fahiem Bacchus, University of Toronto, 22

DPLL
From every execution of DPLL yielding UNSAT we can
extract a resolution refutation. Label each node with
resolvent of its two children

(x,y) (¬x,r)

¬x

¬y y

(¬y,r)

¬r r

(x,¬r)

(x,z)

¬z z

(¬r,¬z)

x

¬r r

¬z

(¬r,¬z)

z

(y,z)

¬y y

(¬x,¬y)

(x,¬y)

(x)

()

(¬x,z)

(¬x,¬r)

(¬x)

Fahiem Bacchus, University of Toronto, 23

DPLL
The resultant resolution DAG is a tree.

(x,y) (¬x,r)

(¬y,r) (x,¬r)

(x,z)

¬z

(¬r,¬z)

(¬r,¬z)

(y,z) (¬x,¬y)

(x,¬y)

(x)

()

(¬x,z)

(¬x,¬r)

(¬x)

Fahiem Bacchus, University of Toronto, 24

Tree Resolutions
Tree Resolutions

A special form of resolution proof in which the resolution DAG
of each refutation is a tree (we are allowed to use the input
clauses more than once).

Tree resolution is sound (it is uses the resolution rule) and
refutation complete. Any resolution refutation can be
converted to a tree resolution.

Fahiem Bacchus, University of Toronto, 25

Conversion to Tree Resolution

Tree Resolution

C4

C1C2 C3

C5 C4

C2 C3

C5

C1 C2

Fahiem Bacchus, University of Toronto, 26

Tree Resolutions
Tree Resolutions have no memory, other than input clauses if
clause has to be used in more than one resolution step it has to
be rederived for each use.

As a result DPLL will often be very inefficient.

Fahiem Bacchus, University of Toronto, 27

P-Simulation
Proof Systems (Cook & Reckhow)
} A proof system for a language L is a polynomial time

algorithm PC s.t.
} For all inputs F

F Î L iff there exists a string P s.t. PC accepts input (F,P)

EXAMPLE
} L is the set of unsatisfiable CNF formulas. F is a sample

CNF, and we want to test if F is unsatifiable.
} P is a proof that F is UNSAT, this proof is valid if there is a

proof-checking algorithm (verifier) PC that runs in time
polynomial in the size of P and F

} The string P is a proof, e.g., a resolution refutation. But other
proof systems exist that verify other type of proofs.

Fahiem Bacchus, University of Toronto, 28

P-Simulation
Proof Systems.

} The complexity of a proof system, PC for a language L is a
function

} The smallest proof of any F that is accepted by the proof
system. f(n) is how the maximum smallest proof grows as the
length of F grows.

f (n) = max
F∈L,|F|=n

min
P:s.t.PCaccepts(F,P)

| P |

Fahiem Bacchus, University of Toronto, 29

P-Simulation
Proof Systems.

} Given two proof systems PC1 and PC2 we say that PC1 p-
simulates PC2 if there is a polynomially computable function f
such that for any proof P2 of PC2 (i.e., proof accepted by PC2)
f(P2) is a proof of PC1.

} In other words any proof of PC2 can be converted to a proof
of PC1 with at most a polynomial increase in size

Fahiem Bacchus, University of Toronto, 30

Tree Resolution
} Tree resolution cannot p-simulate general resolution. That is,

there exists formulas F that have poly-sized resolution
proofs but whose whose shortest tree/ordered resolution
proofs are exponential in size.

} Since DPLL’s search tree corresponds to a tree resolution
this means that DPLL must run in exponential time on such
F, even though F is “easy” for general resolution.

Fahiem Bacchus, University of Toronto, 31

CDCL Solvers
Modern SAT solvers

1. Based on DPLL
2. More efficient implementation methods.
3. Clause learning which gets around the memory less

limitation of tree resolution.
1. This is done by explicitly keeping track of the clauses falsified at the

leaves and the clauses associated with the nodes arising from
resolution steps.

4. Uses the learnt clauses to heuristically guide the solver’s
search (Conflict Directed)

5. Other important advances

Fahiem Bacchus, University of Toronto, 32

Detecting Unit and Empty Clauses
Efficiently
DPLL(p, F)
If F is empty

return (SAT,p) (p is a satisfying assignment)
If F contains an empty clause //F restricted by prior

//assignments
return UNSAT

else choose a variable v in F preferring v in unit clauses
//Need to find unit clauses

F’ = F|v
(SAT?,p’) = DPLL(p + v, F’)

if SAT? == SAT return (SAT,p’)
F’ = F|-v
return DPLL(p + -v, F’)

Fahiem Bacchus, University of Toronto, 33

Detecting Units Efficiently
We need fast ways to find units and empty clauses in F|v

Computing F|v and then restoring F on backtrack would be too
time consuming (F can have millions of clauses)

Fahiem Bacchus, University of Toronto, 34

Detecting Units Efficiently
Clauses are not removed and literals are not removed from
clauses. Rather literals are made true/false.

1. A clause is considered to be removed if one of its literals is
true. The clause is satisfied.

(x, ¬y, z)
2. A clause is empty if all of its literals are false.

(x, ¬y, z)
3. A clause is unit if it is not satisfied and all but one of its

literals are false.
(x, ¬y, z)

We want to detect these cases efficiently.

Fahiem Bacchus, University of Toronto, 35

Unit Propagation
Once a clause is detected to be unit

(x, ¬y, z)

The SAT solver must set the remaining literal to True.
x

On this literal is set to True some other clause might become
unit

(¬x, ¬y, r)

This process run to completion (setting all literals forced by unit
clauses) is called Unit Propagation

Fahiem Bacchus, University of Toronto, 36

Search (Trail)
Root no decisions made

x forced by input unit clause (x)

¬y forced by clause becoming unit (¬y, ¬x)

r

Sequence of literals forced by unit propagation

t No more literals forced by unit propagation. Now SAT solver makes a
decision (setting another literal)

¬k
Sequence of literals forced by unit propagation

forced by clause (¬y, ¬x, r)

forced by clause (¬t, ¬r, ¬k)

Fahiem Bacchus, University of Toronto, 37

Detecting Units Old way
For each literal keep a list of clauses it appears in.

Keep a count of the false literals in the clause.

If x is made false, increment the count for every clause it is in. If
that count is equal to the clause length -1 the clause has
become unit.

Examine the clause to find the literal it implies

Requires work for every clause x appears in
Requires work to restore the counts on backtrack.

Fahiem Bacchus, University of Toronto, 38

Detecting Units New way
Two clauses are selected from each clause to be watch literals.

Each literal has a list of clauses it watches.

So whenever a literal becomes false we check only the clauses it
watches (a fraction of the clauses it appears in).

Make x false:
Examine the clauses that x watches:
} If the other watch is True, do nothing (clause is satisfied)
} Else find a non-true literal y in the clause that is not the other watch.

} If there is no such y,
if other watch is unset the clause is unit
if the other watch is False the clause is empty

} Else (found y)
Remove clause from x’s watch list, add it to y’s watch list (make y a new
watch.

Fahiem Bacchus, University of Toronto, 39

Watch Literals
So to update with a newly false literal we need only check
about a fraction of the clauses the literal appears in (those it
watches).

No work needs to be done on backtrack—if the watches are
valid, they will remain valid on backtrack.

Fahiem Bacchus, University of Toronto, 40

Clause Learning
When we find an empty clause (falsified clause) DPLL will
backtrack—we have hit a deadend.

CDCL also backtracks but first learns and remembers a new
clause. This new clause will block this deadend and
hopefully other deadends.

Fahiem Bacchus, University of Toronto, 41

Clause Learning
● X

∎ A
∎ ¬B
∎ C

● ¬Y
∎ D
∎ ¬E
∎ F

● Z
∎ H
∎ I
∎ ¬J
∎ ¬K
(K,¬I,¬H, ¬F,E, ¬D,B)

● X,Y,Z: Decision Variables.
∎ A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit

propagation
• (K,¬I,¬H, ¬F,E, ¬D,B): Conflict Clause

Fahiem Bacchus, University of Toronto, 42

Clause Learning
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced
by some clause becoming
unit.

Fahiem Bacchus, University of Toronto, 43

Clause Learning
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

Each clause reason contains
1.One true literal on the path

(the literal it forced)
2. Literals falsified higher up on

the path.

Fahiem Bacchus, University of Toronto, 44

Clause Learning
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• We can resolve away any
sequence of forced literals in
the conflict clause.

• Such resolutions always yield
a new falsified clause.

1. (K,¬I,¬H,¬F,E, ¬D,B), (D,B,Y) è
(K,¬I,¬H,¬F,E,B,Y), (¬B, A) à
(K,¬I,¬H,¬F,E,A,Y)

2. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) è
(¬I,¬H,¬F,E, ¬D,B)

3. (K,¬I,¬H,¬F,E, ¬D,B), (H,B,E,¬Z) è
(K,¬I,¬F,E,¬D,B,¬Z)

4. …

Fahiem Bacchus, University of Toronto, 45

Clause Learning

• Any forced literal x in any conflict clause can be
resolved with the reason clause for –x to generate a
new conflict clause.

• If we continued this process until all forced literals are
resolved away we would end up with a clause
containing decision literals only (All-decision clause).

• But empirically the all-decision clause tends not be very
effective.
– Too specific to this particular part of the search to be

useful later on.

Fahiem Bacchus, University of Toronto, 46

1-UIP clauses

• The standard clause learned is a 1-UIP clause
• This continually involves resolves the trail deepest literal

in the conflict clause until there is only one literal left in
the clause that is at the deepest level.
• Since every resolution step replaces a literal by

literals falsified higher up the trail, we must eventually
achieve this condition

• The sole remaining literal at the deepest level is
called the asserted literal.

Fahiem Bacchus, University of Toronto, 47

1-UIP Clause
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B)
è (¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H, ¬F,E, ¬D,B,¬X)

The 1-UIP clause shows
that ¬H was actually
implied at the previous
decision level.

But before the SAT solver
didn’t know this.

Fahiem Bacchus, University of Toronto, 48

1-UIP clauses

• A 1-UIP clause is sometimes called an empowering
clause. Once we have it, UP will force a literal that it
wasn’t able to before.

Fahiem Bacchus, University of Toronto, 49

1-UIP clauses
• The 1-UIP clause forces its asserted literal at a prior

decision level (if we had the clause before we would
have forced the asserted literal before).

• We backtrack so as to fix the trail to account for the
new 1-UIP clause.

• The asserted literal is forced as soon as all other literals
in the clause became false. The assertionLevel is the
second deepest decision level in the clause (the
asserted literal is at the deepest level)

• So we backtrack to that level (not undoing the decision
or anything forced at that level), add the asserted
literal to the trail, with the 1-UIP clause as its reason,
then apply UP again.

Fahiem Bacchus, University of Toronto, 50

1-UIP Clause
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

● X
∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …
∎ ¬H ç (¬H,¬F,E, ¬D,B,¬X)

More unit
propagation

Fahiem Bacchus, University of Toronto, 51

1-UIP clauses
• Note that we are jumping back across incompletely

tested decisions.
• We backtracked over Z, but we don’t know if ¬Z might not

have lead to a solution.
• All we know is that the trail is now patched to account for the

newly learnt clause
• Search is no longer “systematic” like DPLL
• Instead completeness comes from learning clauses.

• (a) it is cheap to backtrack, (b) going back far enough
to fix the trail makes the implementation more efficient,
(c) allows the search to explore a different area of the
space.

Fahiem Bacchus, University of Toronto, 52

1-UIP clauses
• If the 1-UIP clause is unit we go back to level zero—

before any decision. So clause learning can generate a
number of restarts.

Fahiem Bacchus, University of Toronto, 53

VSIDS Heuristic
• Heuristic for selecting next decision literal (variable)
• Variable State Independent Decaying Sum
• Intuitions vary: but VSIDS is thought to encourage

resolutions involving most recently learnt clauses.
• A counter for each variable. Increment the counter of all

variables in each clause that is used in the 1-UIP clause learning
process.

• Periodically divide all counts by 2.
• Pick the unassigned variable with highest count at each

decision
• Low overhead (counters updated only for variables in

conflict). Variables kept on heap ordered by counter.
• Causes the SAT solver to branch on variables that

appeared in recent learnt clauses.

Fahiem Bacchus, University of Toronto, 54

Phase Saving/Restarts
Phase saving
• We decide to branch on a variable: what literal to try

first?
• Use the literal that was the most recent setting of the

variable on the trail.
Restarts
• Periodically restarting the solver (undoing all decisions)

is useful.
• Various strategies have been investigated for when

to restart.
• Note that because of phase saving and the fact

that the VSIDS scores are unchanged, restarts tend
to put back the same literals on the trail---but in a
different order.

Fahiem Bacchus, University of Toronto, 55

Resolution Power
• With these various features it can be show that CDCL

solvers (Conflict Driven Clause Learning) are no longer
limited to tree-resolution instead they can p-simulate
general resolution

• Remains an open question whether or not CDCL
without restarts is as powerful as general resolution.

Fahiem Bacchus, University of Toronto, 56

Other Techniques
1. Clause reduction: Once we have the 1-UIP clause we

can try to resolve away further literals in such a way
that the clause is reduced in size.

2. Forgetting Learnt Clauses: We remember how many
different decision levels appear in the learnt clause.
This is called the LBD number for the learnt clause.
a) Every 10,000 learnt clauses we sort all of the learnt

clauses by LBD, and remove that ½ that has highest
LBD (but keep all clauses with LBD 2).

3. Preprocessing: apply exhaustive resolution steps to
eliminate variables, equality reduction, subsumption,
etc.

4. In processing—apply the preprocessing simplifications
at various points during solving.

Fahiem Bacchus, University of Toronto, 57

Assumptions
• Assumptions. A useful technique is solving the formula F

subject some set of literals called assumptions:

A = {l1, l2, …, lk}

• The sat solver returns a truth assignment satisfying the
formula and also making all assumptions literals true.

• If no such truth assignment exists it returns a clause

c = (¬l1c, ¬l2c, ..., ¬ljc)

Such that F ⊧ c and lic∈ A.
This clause says that at least one of these literals must
be false. (It specifies a subset of A that cannot be
made true).

Fahiem Bacchus, University of Toronto, 58

Assumptions
• This is achieved by forcing the SAT solver to pick the

assumption literals as its first set of decisions.
• Initially every decision is the next unassigned literal in A,

until here are no more unassigned literals in A.
• After assigning all literals in A we then continue the

normal SAT solving process with the freedom to pick
any decision variables we want.

Fahiem Bacchus, University of Toronto, 59

Assumptions
• Either the sat solver finds a satisfying assignment (that

makes A true) or it learns a clause b falsified by the
levels containing the decisions over A.

• If we resolve away all forced literals in b to obtain an
all-decision clause which is the clause c we want.
• All decisions at and above the level b is falsified are

assumption literals

MaxHS a hybrid approach to solving
Maxsat

Fahiem Bacchus
University of Toronto

Outline

} General Purpose Exact optimizers

} MaxSat—an optimization version of SAT

} MaxHS

} Empirical Results

Fahiem Bacchus, University of Toronto61

General Purpose Exact Optimizers

Discrete Optimization

} Discrete Optimization problems are ubiquitous in AI
} Decision making problems with a payoff we want to

maximize.
} Problems that we want to solve that can be formulated as an

optimization problems.

} Often these optimization problems are NP-Hard so a
major challenge is to find solutions within feasible
resource limits.
} The resources available depend on the application.

Fahiem Bacchus, University of Toronto63

Discrete Optimization

} Much work has been done on problems with special
structure, e.g., convex, sub modular, bounded tree-
width. This structure admits sophisticated analysis and
often poly-time exact or approximation algorithms.

} However, not all problems have such structure.
} Often the theoretical approximation guarantees are

weaker than needed in practice.

Fahiem Bacchus, University of Toronto64

General Purpose Optimizers

} Exact general purpose optimizers, e.g., MIP solvers and
more recently MaxSat solvers can be viable
alternatives.

} The worst case complexity often makes people shy
away from using such solvers.

} However such solvers are seen tremendous advances
in performance in the past couple of decades, and in
practice can often provide a better solution.

} Many industrial problems are solved with IP and SAT
solvers.

Fahiem Bacchus, University of Toronto65

General Purpose Optimizers

} The main attractive feature of such solvers is that they
do not require that the input problem has any particular
type of structure.

} So they can be applied to a wider range of problems, or
applied to a more accurate model of the problem.

Fahiem Bacchus, University of Toronto66

MaxSat via IP and SAT Solvers

} MaxSat is an optimization version of the SAT problem
that can represent a range of optimization problems.

} In this talk I will discuss a hybrid solver for MaxSat that
utilizes both SAT and IP solving.

Fahiem Bacchus, University of Toronto67

MaxSat

The MaxSat Problem

} In theoretical studies MaxSat is taken to be the problem
of satisfying a maximum number of clauses of a CNF
formula.

} We can generalize this to associate a weight with each
clause and make the problem be one of satisfying a
maximum weight of clauses.
} Equivalently MaxSat can be seen as a minimization problem:

minimize the weight of the falsified clauses.
} This generalization is far more useful for modeling

practical problems.

Fahiem Bacchus, University of Toronto69

The MaxSat Problem

} Input:
} a propositional formula in Conjunctive Normal Form

} A conjunction of clauses
} Each clause is a disjunction of literals
} Each literal is a propositional variable or the negation of a

propositional variable.
} A cost (weight) associated with falsifying each clause

} Output:
} A MaxSat Solution: a truth assignment of minimum cost

} This truth assignment falsifies a minimum weight of clauses
} Equivalently it satisfies a maximum weight of clauses.

Fahiem Bacchus, University of Toronto70

The MaxSat Problem

} If the weight of a clause is infinite then it costs an
infinite amount to falsify it, i.e., it must be satisfied.

} Infinite weight clauses are called hard clauses, finite
weight clauses are called soft clauses.

Fahiem Bacchus, University of Toronto71

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fahiem Bacchus, University of Toronto72

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Soft Clauses

Fahiem Bacchus, University of Toronto73

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Hard Clause

Fahiem Bacchus, University of Toronto74

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0
0 0 1 5
0 1 0
0 1 1 ∞

∞

Fahiem Bacchus, University of Toronto75

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 4
0 0 1 5
0 1 0
0 1 1 ∞

∞

Fahiem Bacchus, University of Toronto76

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 4 + 10
0 0 1 5
0 1 0
0 1 1 ∞

∞

Fahiem Bacchus, University of Toronto77

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 14
0 0 1 5
0 1 0
0 1 1 ∞

∞

Fahiem Bacchus, University of Toronto78

Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 14
0 0 1 5
0 1 0
0 1 1 ∞

∞

Max-SAT Solution

cost(l1, l2,¬l3) = 3

Fahiem Bacchus, University of Toronto79

MaxSat
} Unweighted version is complete for the complexity class

FPNP of functions computable in polynomial time given
access to an NP oracle

} APX-Complete (no polynomial time approximation
scheme unless P=NP)

} Many important problems fall into this class and can
therefore be efficiently expressed as MaxSat

} Bioinformatics, Electronic Design Automation,
Operations Research, various planning problems…

} The MaxSat encoding is often quite natural.

Fahiem Bacchus, University of Toronto80

Example, correlation clustering

} A collection of objects that we wish to partition into clusters
of similar objects.

} Represent the objects as vertices in a graph.
} Each edge has a weight---negative if the objects it connects

are not similar, positive if the objects are similar.

} Goal: Partition the vertices so that the following sum is
minimized:
} weight(e) for every edge e with positive weight where its two

vertices are in different clusters
} -weight(e) for every edge e with negative weight where its two

vertices are in the same cluster.

Fahiem Bacchus, University of Toronto81

Example, correlation clustering

} Unknown number of clusters, if we have n objects we can have n
clusters (0—n-1).

} For each object use log2(n) propositional variables whose F/T
(0/1) values represent the base 2 encoding of that object’s
cluster.

} Two objects o1, o2 with an edge between them are in the same
cluster if propositional variable s1,2 is true.

s1,2 ó all bits in the bit encodings are the same
a set of hard clauses.

} Soft clauses, for every pair of objects o1, o2, where wt is the
weight of the edge between these objects:

(¬s1,2; wt) when wt > 0

(s1,2; -wt) when wt < 0

Fahiem Bacchus, University of Toronto82

Example, Correlation Clustering
Approximation quality

Fahiem Bacchus, University of Toronto83

} SDPC—approximation based on rounding a semi-definite program
} KC—greedy approximation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Benefits of MaxSat
Provably optimal solutions

Example: Correlation clustering by MaxSat
[Berg and Järvisalo, 2016]

 15
 20

 35

 55

 100
 150
 200
 300

 700

 2000
 3000
 4000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Co
st

 o
f C

lu
st

er
in

g

p

SDPC
KC

MaxSAT-Binary

! Improved solution costs over approximative algorithms
! Good performance even on sparse data (missing values)

Solving times 10-
100 seconds.

x-axis degree of
completeness of
the graph

Reported Applications of MaxSat

Fahiem Bacchus, University of Toronto84
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

MaxSat Applications

probabilistic inference [Park, 2002]
design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]

[Chen, Safarpour, Marques-Silva, and Veneris, 2010]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]

[Ignatiev, Janota, and Marques-Silva, 2014]
Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency [Lynce and Marques-Silva, 2011]
reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]
heuristics for cost-optimal planning [Zhang and Bacchus, 2012]
optimal covering arrays [Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]
treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Järvisalo, 2014]
visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Järvisalo, 2016]
...

Reported Applications of MaxSat

Fahiem Bacchus, University of Toronto85

} Growing number of applications being reported in the
last couple of years.

} Advances in MaxSat Solver technology are central to
this increasing success

Improvements in MaxSat Solving
UNWEIGHTED (2008-2016)

Fahiem Bacchus, University of Toronto86

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 200 400 600 800 1000 1200

se
co

nd
s

instances

Open-WBO (2015)
MaxHS (2016)
MSCG (2015)

Eva (2014)
Open-WBO (2014)

Z3 (Microsoft 2016)
QMaxSAT (2013)

WPM2 (2013)
PM2 (2010)

QMaxSAT (2011-12)
QMaxSAT (2010)

CPLEX (IBM 2013)
SAT4J (2009-10)

IncWMaxSatz (2008)

Improvements in MaxSat Solving
WEIGHTED (2008-2016)

Fahiem Bacchus, University of Toronto87

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800

se
co

nd
s

instances

MaxHS (2016)
LHMS (2015-16)

MSCG (2015)
MaxHS (2013)

Eva (2014)
QMaxSAT (2014)

Z3 (Microsoft)
CPLEX (IBM)
WPM2 (2013)

WPM1 (2011-12)
WBO (2010)

IncWMaxSatz (2008)
SAT4J (2009-10)

Problem Sizes

Fahiem Bacchus, University of Toronto88

} Largest problems solved in MaxSat Evaluation,
>6,000,000 variables and > 13,000,000 clauses
(solved by MaxHS in < 800 sec.)

} MaxSat is considerably harder than SAT, for SAT
problems as big as >10,000,000 variables and
>50,000,000 clauses have been solved.

MaxHS

Prior Methods for Solving MaxSat

} Most MaxSat solvers exploit a SAT solver to
solve a series of SAT decision problems

} Relaxation/blocking variables are used to
control which clauses must be satisfied.

Fahiem Bacchus, University of Toronto90

Relaxation Variables

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fb = (¬l1∨b1), (l2 ∨b2), (¬l3∨b3), (l2 ∨ l 3∨b4), (l1∨¬l2){ }
• Add a fresh variable to each soft clause
• Drop the clause weights
• is satisfiable if hards are satisfiable, since

setting to true removes the original soft
clauses

bi

bi
Fb

Fahiem Bacchus, University of Toronto91

Basic Sequence of SAT
} Suppose all soft clauses have weight 1
} Add a cardinality constraint over the relaxation

variables, limiting how many can be assigned to True
(i.e., how many softs can be falsified)

bi
i
∑ ≤ k
#

$
%

&

'
(Fb ∧ CNF SAT

Solver

Fahiem Bacchus, University of Toronto92

Basic Sequence of SAT
} Observation: If k is the minimum number of softs that

can be falsified then the formula is satisfiable, and
each satisfying solution is a is a Max-SAT solution

bi
i
∑ ≤ k
#

$
%

&

'
(Fb ∧ CNF SAT

Solver

Fahiem Bacchus, University of Toronto93

Basic Sequence of SAT
} This approach can be extended to non-uniform weights

Fahiem Bacchus, University of Toronto94

SAT
Solver

F b ^ CNF (
X

costi ⇥ bi  k)

Basic Sequence of SAT
} Can no longer use simple cardinality constraints
} One has to encode linear equations over the b-variables

into CNF to capture the different costs (pseudo-boolean
constraints).

} Such constraints are hard for the SAT solver.
} Even for the unweighted case the sum over all b-

variables requires a very large and inefficient
encoding—when you have thousands/millions of soft
clauses.

Fahiem Bacchus, University of Toronto95

Core Based SAT approaches
} This simple approach can be significantly improved by

utilizing cores.

Fahiem Bacchus, University of Toronto96

Cores

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Core: K1 = {(¬l1,3), (l2, 4)}

• A core is a set of soft clauses that is
inconsistent with the hard clauses

Fahiem Bacchus, University of Toronto97

Cores

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Core: K1 = {(¬l1,3), (l2, 4)}

• Using {-bi | bi is a blocking variable} as
assumptions SAT solvers can return a core.

Fahiem Bacchus, University of Toronto98

Cores

• Assumptions are a set if literals. When given
assumptions A the SAT solver will either find a
satisfying model in which every literal in A is true

• Or it will return a clause containing only negated
literals of A.

• So when A = {-bi | bi is a blocking variable} the
returned clause will be of the form
(b1, b3, b5, b6, …) a set of positive b-literals

• bi = True è soft clause ci is falsified. So this
clause specifies a subset of soft clauses at least
one of which must be falsified: a core.

Fahiem Bacchus, University of Toronto99

Core Based MaxSat Algorithms

} Observation: at least one of the clauses in a core will be
falsified by the Max-SAT solution

} Idea: given a core, we can use cardinality constraints
over only the relaxation variables of the soft clauses in
the core to express this condition.

} These are typically much smaller than cardinality
constraints over all relaxation variables.

Fahiem Bacchus, University of Toronto100

Core Based MaxSat Algorithms

} The cardinality constraint “relaxes” the formula…it
allows one of these soft clauses in the core to be
falsified.

} If that relaxation is insufficient another core will be
found, and the formula can be further relaxed.

Fahiem Bacchus, University of Toronto101

Core Based MaxSat Algorithms

} Today, many modern MaxSat solvers
such as RC-2, WBO, and Eva500 are
based on this idea.

} Works well when
1. Very few soft clauses are falsified in the

optimal model (< 200)
2. Very small number of distinct clause

weights (< 3)

Fahiem Bacchus, University of Toronto102

The MaxHS Approach

Fahiem Bacchus, University of Toronto103

Motivation
} Existing MaxSat solvers suffer because they create

harder and harder SAT problems by adding cardinality
constraints over the b-variables.

} The situation is worse when soft clauses have diverse
weights--SAT solvers are not very good at dealing with
pseudo Boolean constraints.
} SMT-solvers don’t offer any significant improvement

} MaxSat problems can also be converted to an Integer
Program. But IP solvers perform poorly because the
linear constraints arising from the clauses often yields
a poor linear relaxation.

Fahiem Bacchus, University of Toronto104

The MaxHS Approach
} The SAT problems are subsets of the original Max-SAT

formula
} They are likely to be no harder for a SAT solver than the

original formula
} All numeric reasoning about costs is delegated to an

Integer Programming solver (CPLEX)
} designed for optimization
} costs can be floating point numbers
} the underlying LP + Cuts approach is very powerful

Fahiem Bacchus, University of Toronto105

Multiple Cores
} A core says that at least one of the soft clauses in it

must be falsified
} Idea: generalize this observation to multiple cores

} [Bacchus, Cho, Davies 2010, Helmert & Bonet 2010]

Fahiem Bacchus, University of Toronto106

Hitting Sets

K1 = {C1,C3,C10}
K2 = {C3,C4}
K3 = {C5,C9,C11}

Cores

• A hitting set is a subset of the soft clauses,
that includes at least one clause from each
core

Fahiem Bacchus, University of Toronto107

Hitting Sets

K1 = {C1,C3,C10}
K2 = {C3,C4}
K3 = {C5,C9,C11}

Cores
hs1 = {C3,C5}
cost(hs1) = wt(C3)+wt(C5)

• A hitting set is a subset of the soft clauses,
that includes at least one clause from each
core

• We are interested in hitting sets of
minimum cost

Fahiem Bacchus, University of Toronto108

Cores and hitting sets
} Remember

} A set of soft clauses 𝜿⊆ S is a core of F if 𝜿∪ H is UNSAT
} Feasible solutions satisfy the hard clauses H

} Let K be any set of cores of F and π any feasible
solution. π must falsify at least one soft clause of every
core in K.

} Let A = {c | 𝜋 ⊭ c} be the set of clauses falsified by 𝜋
} Then A is a hitting set of K (non-empty intersection with

every member of K).

109

Cores and hitting sets
} Let MCHS(K) be a minimum cost hitting set of K–this is a set

of soft clauses.
} For every feasible solution 𝜋

cost(π) = wt(A) ≥ wt(MCHS(K))
} The weight of a minimum cost hitting set of any set of cores

is a lower bound on the cost of an optimal solution.
} Therefore, for any set of cores K and any feasible solution π

if cost(π) = wt(MCHS(K)), π must be an optimal solution.

} This leads to a simple algorithm for finding an optimal
solution.

110

MaxHS Theorem

Theorem
If a truth assignment π satisfies where is a
minimum cost hitting set of a collection of cores, then π is
a Max-SAT solution.

F \ hs hs

Proof Sketch: π has cost at most cost(hs) since it
satisfies all clauses not in hs. But cost(hs) is a lower
bound on the cost of the Max-SAT solution.

cost(π) cost(hs) mincost(F) cost(π) ≤ ≤

Fahiem Bacchus, University of Toronto111

≤

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

112

UNSAT

SAT

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

113

UNSAT

SAT

Call	the	sat	solver	to	solve	
the	hard	clauses	along	
with	assumptions	that	
force	all	of	the	soft	clauses	
to	be	satisfied	(except	for	
the	softs	in	hs)

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

114

UNSAT

SAT

𝜋 satisfies	H	and	all	soft	
clauses	except	possibly	
the	softs	in	hs.	So	
cost(𝜋)	≤	wt(MCHS(𝒦))

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

115

UNSAT

SAT

If UNSAT the SAT solver the
conflict returned is a core

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

116

UNSAT

SAT

The returned core must be
new, not previously in 𝒦-—the
new core contains no softs
from hs, but every core in 𝒦
contains a soft of hs.

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

117

UNSAT

SAT

This process must terminate as
there are only a finite number
of cores.

MaxHS

} MaxHS is using SAT reasoning to incrementally
construct an IP problem from the input MaxSat
problem.

} If the set of soft clauses {c1, c4, c6, c7} is a core,
the IP will contain the linear constraint

where the bi are the clause relaxation variables
indicating that at least one of them is true (=1).

} These constraints specify a hitting set (set-
cover) problem.

Fahiem Bacchus, University of Toronto118

b1 + b4 + b6 + b7 ≥1

MaxHS
} Set cover is hard in general, but MIP solvers

like CPLEX are quite effective on set-cover.

} The approach is related to logic based
Benders (Hooker). Also to the implicit hitting
set formalism of Karp.

} This re-encoding can be much more effective
than directly trying the solve the MaxSat
problem with an IP solver

Fahiem Bacchus, University of Toronto119

Behavior of MaxHS

} MaxHS is incremental
} Every iteration produces a lower bound on the

MaxSat solution

} Three potential sources of exponential
behaviour:
1. SAT Solving
2. Solving the NP-Hard minimum hitting set

problem
3. Number of iterations of SAT solving/hitting

set computations
Fahiem Bacchus, University of Toronto120

Where is the time spent?

Solved Unsolved

Fahiem Bacchus, University of Toronto121

Improving the basic algorithm

Solving the MCHS problem after every single core is too
slow
1. Give better constraints to CPLEX
2. Generate constraints more cheaply without an

expensive MCHS computation
3. Give CPLEX multiple constraints at a time thus

reducing the total number of calls to CPLEX

Fahiem Bacchus, University of Toronto122

Better Constraints: Minimal Cores
} The cores returned by the SAT solver may contain

irrelevant clauses
} A minimal core is one for which no proper subset is a

core
} How to find minimal cores?

} a simple algorithm that tests if each clause can be
removed from the core with a call to the SAT solver.

} There are improved algorithms for minimizing cores
(Bacchus & Katsirelos CAV-2015). Some of these ideas
have been exploited in MaxHS.

} Finding minimal cores is too expensive, but we can
spend some time making them smaller with these
algorithms.

Fahiem Bacchus, University of Toronto123

Cheaper Constraints: Seeding
} By examining the input CNF we can find constraints

that can be feed directly into CPLEX.
} Seed CPLEX with a collection of such constraints, as a

preprocessing step

Fahiem Bacchus, University of Toronto124

Relaxation Variables

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fb = (¬l1∨b1), (l2 ∨b2), (¬l3∨b3), (l2 ∨ l 3∨b4), (l1∨¬l2){ }

• Don’t really need a relaxation variable for unit
soft clauses.

• E.g., indicates that the soft clause is
falsified.

Fahiem Bacchus, University of Toronto125

(¬l1,3)l1

Cheaper Constraints: Equivalence Seeding

• Examine input formula for clauses all of whose
variables appear in unit soft clauses.

(l1,3) (l2, 2) (l3,10)

• The constraint

can be added to the IP solver.
Note that now the IP solver is not solving a pure set-
cover problem. It is finding a constrained hitting set.

(l1∨¬l2 ∨¬l3)

Fahiem Bacchus, University of Toronto126

l1 + (1− l2)+ (1− l3) ≥1

Experimental Results For these improvements

Fahiem Bacchus, University of Toronto127

Multiple Constraints: Non-Optimal Hitting Sets
} At each iteration, a single constraint is added to the IP

model and the hitting set problem is solved to
optimality again

} Goal: reduce the number of times the hitting set
problem must be solved to optimality.

} Use heuristics to find a non-optimal hitting set instead
of an optimal one.

Fahiem Bacchus, University of Toronto128

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

129

UNSAT

SAT

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)

130

UNSAT

SAT

Use a non
minimum cost
hitting set
instead.

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

131

UNSAT

SAT

Use a non
minimum cost
hitting set
instead.

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

132

UNSAT

SAT

Ok, always returns new
core

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an
optimal
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

133

UNSAT

SAT

But now, we
cannot conclude
𝜋 is	optimal

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	
install	as	new	
incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

134

UNSAT

SAT

However 𝜋
might	be	lower	
cost	model	than	
we	have	seen	
before

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	
install	as	new	
incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

135

UNSAT

SAT

We must continue

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	
install	as	new	
incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

136

UNSAT

SAT

We must continue

Make sure that
we don’t cycle
returning the
same hs as
before!

hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	
cheapest	model	
found	install	as	
new	incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

137

UNSAT

SAT

To terminate we must
occasionally compute
a MCHS.

hs = {}
𝒦 = {}

SatAssume
(H,	S\hs)

If	𝜋 is	the	
cheapest	model	
found	install	as	
new	incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
Occasionally (via some policy):

hs = MCHS(𝒦)

138

UNSAT

SAT

To terminate we must
occasionally compute
an MCHS.

hs = {}
𝒦 = {}

SatAssume
(H,	S\hs)

If	𝜋 is	the	
cheapest	model	
found	install	as	
new	incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
Occasionally (via some policy):

hs = MCHS(𝒦); LB = wt(hs)

139

UNSAT

SAT

MCHS provides a
lower bound!

hs = {}
𝒦 = {}

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	install	as	
new	incumbent.	
If LB ≥ cost(incumbent)

return incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
Occasionally (via some policy):

hs = MCHS(𝒦); LB = wt(hs)
If LB ≥ cost(incumbent) return incumbent

140

UNSAT

SAT

Lower bound meets
upper bound
becomes new
termination condition.

MaxHS Performance 2013

Fahiem Bacchus, University of Toronto141

MaxHS Development

Fahiem Bacchus, University of Toronto142

2013 2014 2015

4410 4613 4862

} Numerous improvements since 2013.
} Measuring the number of problems solved within a time

limit of 1800 sec. and 3.5 GB (on the same machine)
here is how the software has improved.

Recent Developments

Fahiem Bacchus, University of Toronto143

} Use CPLEX to compute non-optimal hitting sets
} Use call backs in CPLEX. If CPLEX finds a feasible

solution that is better than the current best solution, we
stop CPLEX and use its feasible solution as a non-
optimal hitting set.

Reduced cost fixing (CP-2017).
} By finding feasible but not optimal solutions using non-

optimal hitting sets, we have an upper bound.
} The cost of a MCHS to the current set of cores is a

lower bound.
} These two bounds allow us to use the OR technique of

reduced cost fixing.

} Fahiem Bacchus, Antti Hyttinen, Matti Jarvisalo, and
Paul Saikko; Reduced Cost Fixing in MaxSAT, CP 2017

Fahiem Bacchus, University of Toronto144

Reduced cost fixing (CP 2017).
} Solve the Linear program arising from the linear

relaxation of the current CPLEX model.
} The optimal LP solution provides a “derivative” cost for

changing the value of the variables that have been set to
their upper or lower bound in the optimal solution. These are
called the reduced costs of the variables.

} The LP variables are b-variables set to 0 (satisfy a soft
clause) or 1 (falsify a soft clause). So if in the LP the cost of
the LP solution + reduced cost(bi) > UPPER BOUND, we can
fix that b-variable to 0 converting a soft clause to a hard
clause in the SAT model
} No model with that variable set to 1 will have cost less than the

current incumbent.

Fahiem Bacchus, University of Toronto145

Reduced cost fixing (CP 2017).
} Similar logic applies to some b-variables set to 1: no

better model exists if we require that soft clause to be
satisfied—so always falsify it in the SAT model.

Fahiem Bacchus, University of Toronto146

Fahiem Bacchus, University of Toronto

Fahiem Bacchus, University of Toronto148

Fig. 2. Speedup histograms over instances on which reduced cost fixing would force some vari-
ables in terms of log2 of CPU time with fixing and without fixing. Left: under 30-minute per-
instance time limit, right: under 5-hour per-instance time limit.

Fig. 3. Scatter plots of CPU times with and without reduced cost fixing, omitting instances 5024
where no fixing occurred. Left: all instances; middle: unweighted instances; right: weighted. in-
stances.

6 Conclusions

We proposed the use of reduced cost fixing—a standard approach in IP—in MaxSAT
solving as a means of utilizing bounds information during search to infer knowledge
of soft clauses which are satisfied or left falsified by some optimal solutions. We ex-
plained how reduced cost fixing can be integrated into the implicit hitting set approach
to MaxSAT by performing reduced cost analysis directly on the LP relaxation of the
hitting-set IP already utilized in the IHS search routine. We showed through an exten-
sive empirical evaluation that reduced cost fixing can provide considerable speedups
improving on the overall performance of MaxHS.

References

1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted) partial
MaxSAT. In: Proc. CP. Lecture Notes in Computer Science, vol. 8124, pp. 117–132. Springer

MaxSMT
Implicit Hitting Set Algorithms for Maximum Satisfiability
Modulo Theories; Katalin Fazekas, Fahiem Bacchus,
Armin Biere IJCAR-2018
} Cplex--hitting set optimization
} SAT—propositional reasoning
} SMT—theory reasoning

} We provided an abstract reasoning calculus that allows
one to mix these types of reasoning in flexible ways so
as to solve optimization problems with SMT theories.

Fahiem Bacchus, University of Toronto149

MaxHS in the 2017 Evaluation UNWEIGHTED

Fahiem Bacchus, University of Toronto150

Complete track: Unweighted

880 instances

Solver #Solved Time (Avg)
Open-WBO-RES 652 129.9
MaxHS 651 182.61
maxino 639 99.14
MSUSorting 622 171.96
QMaxSATuc 573 165.19

I Best unweighted solvers take advantage of unsatisfiable cores
I How do they compare against last year solvers (Open-WBO-MSE16)

and general optimization solvers (Z3, CPLEX)?

15 / 25

MaxHS in the 2017 Evaluation UNWEIGHTED

Fahiem Bacchus, University of Toronto151

Complete track: Unweighted

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 100 200 300 400 500 600 700

Ti
m

e
in

 s
ec

on
ds

Number of instances

Unweighted MaxSAT: Number x of instances solved in y seconds

Open-WBO-RES
Open-WBO-MSE16

MaxHS
maxino

MSUSorting
QMaxSATuc

Z3
QMaxSAT

LMHS
Open-WBO-LSU

CPLEX

15 / 25

MaxHS in the 2017 Evaluation WEIGHTED

Fahiem Bacchus, University of Toronto152

Complete track: Weighted
767 instances

Solver #Solved Time (Avg)
MaxHS 538 236.46
QMaxSAT 503 385.18
QMaxSATuc 499 397.82
maxino 498 202.1
Open-WBO-OLL 468 231.88

I MaxHS is much better than the remaning solvers:
I Uses implicit hitting set approach that combines SAT and IP

I QMaxSAT is a good solver for weighted even though:
I encodes PB constraints into CNF
I does not take advantage of unsatisfiable cores

I How do they compare against last year solvers (MaxHS-MSE16) and
general optimization solvers (Z3, CPLEX)?

16 / 25

MaxHS in the 2017 Evaluation WEIGHTED

Fahiem Bacchus, University of Toronto153

Complete track: Weighted

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 3600

 0 100 200 300 400 500 600

Ti
m

e
in

 s
ec

on
ds

Number of instances

Weighted MaxSAT: Number x of instances solved in y seconds

MaxHS
MaxHS-MSE16

QMaxSAT
QMaxSATuc

maxino
Open-WBO-OLL

Loandra-S
Loandra-P

LMHS
Loandra-I

Z3
Open-WBO-LSU

CPLEX

16 / 25

MaxHS in 2018 Evaluation
} Outperformed by RC-2 on the instances used in that

evaluation!
} But on larger test set still outperforms RC-2 on

weighted instances.

} Nevertheless indicates that the pure SAT based
methods do have some effective features.
} working on importing some key ideas from these solvers into

the MaxHS approach.

Fahiem Bacchus, University of Toronto154

MaxHS is Open Source

} www.maxhs.org

Fahiem Bacchus, University of Toronto155

Future Work

} MaxHS represents only one way of
hybridizing IP and SAT. Other methods
worth investigating.
} Could have mixed input models with both

clauses and linear constraints.
} Could use MaxSat as a sub-IP solver for

cutting plane generation.
} Applications in matching and other

areas.
Fahiem Bacchus, University of Toronto156

Fahiem Bacchus, University of Toronto157

Thank you

Fahiem Bacchus, University of Toronto158

Solving MaxSat with IP

} A simple way to solve MaxSat is to
encode it as an IP.

} Add relaxation variables to all soft
clauses.

} Convert each clause to a linear
constraint.

} Set the objective function to be the
minimization of sum of the relaxation
variables weighed by their cost.

Fahiem Bacchus, University of Toronto159

Solving MaxSat with IP

Fahiem Bacchus, University of Toronto160

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fb = (¬l1∨b1), (l2 ∨b2), (¬l3∨b3), (l2 ∨ l 3∨b4), (l1∨¬l2){ }

min = 3b1 + 4b2 + b3 + b4
1− l1 + b1 ≥1
l2 + b2 ≥1...

