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Why Sat Solving?
} Can this approach be successful?
} Yes, we can solve many practical problems with this approach. 
} Evidence with modern SAT solvers indicate that in fact this 

approach can sometimes offer significant performance 
improvements over developing problem specific software. 

} In fact this approach can be successful for other complexity 
classes
} Later we will discuss solvers for MaxSat which is problem complete for 

the class FPNP (the set of problems that be solved in polynomial time 
given access to an NP oracle).
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Conjunctive Normal Form
Modern SAT solvers work with propositional formulas expressed 
in Conjunctive Normal Form (CNF)

CNF: a conjunction of clauses, each of which is a disjunction of 
literals, each of which is either a propositional variable or the 
negation of a propositional variable.

(p1 Ú ¬p2 Ú p3) Ù (p2 Ú ¬p5) Ù (p2 Ú ¬p6) Ù (p4 Ú p5) Ù (¬p3)

We typically write this in abbreviated form:

(p1 , ¬p2, p3)(p2, ¬p5)(p2, ¬p6)(p4, p5)(¬p3)
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Semantics
Truth Assignments (Models)

1. Truth assignment p: map each propositional variable to 
True/False (0,1)

pi à {0, 1}
2. p(¬p)  = 1 if p(p) = 0

= 0 if p(p) = 1
3. p(c)     = 1 if p(l) = 1 for at least one literals l ∈ c

= 0 otherwise 

p(F) = 1 if p(c) = 1 for all clauses c ∈ F
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Satisfiability
CNF Formula F

F is satisfiable if there exists a truth assignment p such that 
p(F) = 1. Unsatisfiable otherwise.

Written as p ⊧	F

f is a logical consequence of F if for all truth assignment p
such that p ⊧	F we have that p ⊧	f

Written as F ⊧	f



Fahiem Bacchus, University of Toronto7

Obvious simplifications
1. A clause with clashing literals in it is true under any truth 

assignment. Such clauses are called tautological. Such 
clauses can be removed from the CNF

2. Duplicate literals are irrelevant and can be removed
3. We say that a clause c is subsumed by another clause c’ if c’ 

is a subset of c
} Any truth assignment that satisfies c must also satisfy c’
} Subsumed clauses can be removed from the CNF
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Some Observations
Notes: 
1. Each clause serves to eliminate some set of truth 

assignments (i.e., these truth assignments cannot be models 
of the CNF. 
} E.g., (a, b, ¬c) eliminates all truth assignments p such that

p(a) = 0, p(b) = 0, and p(c) = 1
} Shorter clauses eliminate more truth assignments

2. By convention no truth assignment satisfies the empty clause 
‘()’ 

3. Satisfiability is NP complete
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CSC2512: CNF
CNF

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1

1 1 0 0

1 1 1
(a)

(-a, c)
Determining if there is a one anywhere (satisfiable) for F 
becomes combinatorial as each clause makes a 
different set of truth assignments unsatisfying.
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Converting to CNF
Any propositional formula can be converted to CNF with no 
more than a polynomial increase in size by introducing new 
variables (Tseitin 1970)

If we don’t introduce new variables—we can have an 
exponential increase in the size of the formula. 
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Encodings
Encodings: CNF is not a natural language for most applications. 
Various domains have different “standard” languages.

} Automated Planning: STRIPS or ADL actions specified with 
first-order variables

} Hardware: Circuits
} Software: Various specification languages (logics with 

extensions).

Specialized techniques have also been developed to encode 
problems expressed in these languages in CNF. The encoding 
used can have a tremendous impact on how easy it is to solve 
the CNF.
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Resolution
Reasoning with CNF
CNF is used in modern SAT solvers mainly because there is a 
very simple reasoning rule that can be efficiently implemented.

Definition: Resolution
Two clauses with a single clashing literal can be resolved:

R[ (A, x), (B, -x)] = (A,B)  

(where A and B are sets of literals). We assume that duplicate 
literals are removed.

} If A and B have more than one clashing pair of literals the 
result will be a tautology
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Resolution
Resolution is sound: Any truth assignment that satisfies c and 
c’ must satisfy R[c,c’]. 

That is resolution generates logical consequences. 

if p ⊧	c	∧	c’	then p ⊧	R[c,c’]
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Resolution Refutations
A Resolution Proof of a clause cn from a CNF F

A sequence of clauses c1, c2, …, cn such that:

1.Each ci is either
1. A member of the set of clauses F
2. or was derived by a resolution step from two prior clauses in the 

sequence cj and ck (j, k < i)

The sequence can also be represented as a DAG (directed 
acyclic graph). 
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Resolution Proofs
C = {(a, b) (-a, c) (-b, d) (-c, -d, e, f)}

There is a resolution proof of (a, b, e, f) from C:

(a, b), (-a, c), (c, b), (-b, d), (a, d), (-c, -d, e, f) (-c, a, e, f) 
(a, b, e, f)

(a,b)
(-a,c)

(c,b)

(-b,d)

(a,d)

(-c, -d, e, f)

(-c, a, e, f)

(a, b, e, f)
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Resolution Refutations
Definition: Resolution Refutation of a CNF F is a resolution 
proof of the empty clause ‘()’ from F.

From soundness, any truth assignment satisfying F must satisfy 
the empty clause, but no truth assignment satisfies the empty 
clause è A refutation proves that F is unsatisfiable
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Resolution Refutations
Resolution is Refutation Complete:
If F is unsatisfiable there exists a resolution refutation of C.

Equivalently if F ⊧	f then we can derive the empty clause from 
F ∧	¬f using resolution.
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DLL (DPLL)
Davis, Logemann and Loveland [1962] introduced a procedure 
for solving SAT based on backtracking. (Became commonly 
known as DPLL)

Modern Conflict Directed Clause Learning (CDCL) algorithms 
can be viewed as generalizations of DPLL
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DPLL
DPLL(p, F) // Initially F is the input formula.

p is an empty set of literals (truth assignment)
If F is empty

return (SAT,p) (p is a satisfying assignment)
If F contains an empty clause

return (UNSAT,∅)
else choose a variable v in F //Prefer a v appearing

//in a unit clause if one exists
F’ = F|v //Reduce F
(SAT?,p’) = DPLL(p + v, F’)

if SAT? == SAT return (SAT,p’)
F’ = F|-v 
return DPLL(p + -v, F’)
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DPLL
Reduction:

F|l F reduced by literal l

Remove all clauses of F that contain l 
(they are satisfied)

Remove –l from all remaining clauses 
(-l can no longer satisfy them)

{(a, b, -d), (d, c, e), (g, h, e)}|-d
= {(c, e), (g, h, e)}
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DPLL
Example:
F = (¬x, r), (¬y, r), (x, z), (y, z), (x, y), (¬x, ¬y), (¬z, ¬r)

(x,y) (¬x,r)

¬x

¬y y

(¬y,r)

¬r r

(x,z)

¬z z

(¬r,¬z)

x

¬r r

¬z

(¬r,¬z)

z

(y,z)

¬y y

(¬x,¬y)
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DPLL
From every execution of DPLL yielding UNSAT we can 
extract a resolution refutation. Label each node with 
resolvent of its two children

(x,y) (¬x,r)

¬x

¬y y

(¬y,r)

¬r r

(x,¬r)

(x,z)

¬z z

(¬r,¬z)

x

¬r r

¬z

(¬r,¬z)

z

(y,z)

¬y y

(¬x,¬y)

(x,¬y)

(x)

()

(¬x,z)

(¬x,¬r)

(¬x)
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DPLL
The resultant resolution DAG is a tree.

(x,y) (¬x,r)

(¬y,r) (x,¬r)

(x,z)

¬z

(¬r,¬z)

(¬r,¬z)

(y,z) (¬x,¬y)

(x,¬y)

(x)

()

(¬x,z)

(¬x,¬r)

(¬x)
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Tree Resolutions
Tree Resolutions

A special form of resolution proof in which the resolution DAG 
of each refutation is a tree (we are allowed to use the input 
clauses more than once).

Tree resolution is sound (it is uses the resolution rule) and 
refutation complete. Any resolution refutation can be 
converted to a tree resolution. 



Fahiem Bacchus, University of Toronto, 25

Conversion to Tree Resolution

Tree Resolution

C4

C1C2 C3

C5 C4

C2 C3

C5

C1 C2
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Tree Resolutions
Tree Resolutions have no memory, other than input clauses if 
clause has to be used in more than one resolution step it has to 
be rederived for each use. 

As a result DPLL will often be very inefficient.
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P-Simulation
Proof Systems (Cook & Reckhow)
} A proof system for a language L is a polynomial time 

algorithm PC s.t.
} For all inputs F 

F Î L iff there exists a string P s.t. PC accepts input (F,P)

EXAMPLE
} L is the set of unsatisfiable CNF formulas. F is a sample 

CNF, and we want to test if F is unsatifiable.
} P is a proof that F is UNSAT, this proof is valid if there is a 

proof-checking algorithm (verifier) PC that runs in time 
polynomial in the size of P and F

} The string P is a proof, e.g., a resolution refutation. But other 
proof systems exist that verify other type of proofs.
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P-Simulation
Proof Systems.

} The complexity of a proof system, PC for a language L is a 
function 

} The smallest proof of any F that is accepted by the proof 
system. f(n) is how the maximum smallest proof grows as the 
length of F grows. 

f (n) = max
F∈L,|F|=n

min
P:s.t.PCaccepts(F,P )

| P |
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P-Simulation
Proof Systems.

} Given two proof systems PC1 and PC2 we say that PC1 p-
simulates PC2 if there is a polynomially computable function f 
such that for any proof P2 of PC2 (i.e., proof accepted by PC2) 
f(P2) is a proof of PC1.

} In other words any proof of PC2 can be converted to a proof 
of PC1 with at most a polynomial increase in size
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Tree Resolution
} Tree resolution cannot p-simulate general resolution. That is, 

there exists formulas F that have poly-sized resolution 
proofs but whose whose shortest tree/ordered resolution 
proofs are exponential in size.

} Since DPLL’s search tree corresponds to a tree resolution 
this means that DPLL must run in exponential time on such 
F, even though F is “easy” for general resolution. 
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CDCL Solvers
Modern SAT solvers

1. Based on DPLL
2. More efficient implementation methods.
3. Clause learning which gets around the memory less 

limitation of tree resolution. 
1. This is done by explicitly keeping track of the clauses falsified at the 

leaves and the clauses associated with the nodes arising from 
resolution steps.

4. Uses the learnt clauses to heuristically guide the solver’s 
search (Conflict Directed)

5. Other important advances
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Detecting Unit and Empty Clauses 
Efficiently
DPLL(p, F)
If F is empty

return (SAT,p) (p is a satisfying assignment)
If F contains an empty clause //F restricted by prior 

//assignments 
return UNSAT

else choose a variable v in F preferring v in unit clauses
//Need to find unit clauses

F’ = F|v
(SAT?,p’) = DPLL(p + v, F’)

if SAT? == SAT return (SAT,p’)
F’ = F|-v 
return DPLL(p + -v, F’)
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Detecting Units Efficiently
We need fast ways to find units and empty clauses in  F|v

Computing F|v and then restoring F on backtrack would be too 
time consuming (F can have millions of clauses)
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Detecting Units Efficiently
Clauses are not removed and literals are not removed from 
clauses. Rather literals are made true/false.

1. A clause is considered to be removed if one of its literals is 
true. The clause is satisfied.

(x, ¬y, z)
2. A clause is empty if all of its literals are false.

(x, ¬y, z)
3. A clause is unit if it is not satisfied and all but one of its 

literals are false.
(x, ¬y, z)

We want to detect these cases efficiently.
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Unit Propagation
Once a clause is detected to be unit

(x, ¬y, z)

The SAT solver must set the remaining literal to True.
x

On this literal is set to True some other clause might become 
unit

(¬x, ¬y, r)

This process run to completion (setting all literals forced by unit 
clauses) is called Unit Propagation
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Search (Trail)
Root no decisions made 

x forced by input unit clause (x)

¬y forced by clause becoming unit (¬y, ¬x)

r

Sequence of literals forced by unit propagation

t No more literals forced by unit propagation. Now SAT solver makes a 
decision (setting another literal)

¬k
Sequence of literals forced by unit propagation

forced by clause (¬y, ¬x, r)

forced by clause (¬t, ¬r, ¬k)
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Detecting Units Old way
For each literal keep a list of clauses it appears in.

Keep a count of the false literals in the clause.

If x is made false, increment the count for every clause it is in. If 
that count is equal to the clause length -1 the clause has 
become unit.

Examine the clause to find the literal it implies 

Requires work for every clause x appears in
Requires work to restore the counts on backtrack.



Fahiem Bacchus, University of Toronto, 38

Detecting Units New way
Two clauses are selected from each clause to be watch literals.

Each literal has a list of clauses it watches.

So whenever a literal becomes false we check only the clauses it 
watches (a fraction of the clauses it appears in).

Make x false: 
Examine the clauses that x watches:
} If the other watch is True, do nothing (clause is satisfied)
} Else find a non-true literal y in the clause that is not the other watch.

} If there is no such y,
if other watch is unset the clause is unit
if the other watch is False the clause is empty

} Else (found y)
Remove clause from x’s watch list, add it to y’s watch list (make y a new
watch.
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Watch Literals
So to update with a newly false literal we need only check 
about a fraction of the clauses the literal appears in (those it 
watches). 

No work needs to be done on backtrack—if the watches are 
valid, they will remain valid on backtrack.
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Clause Learning
When we find an empty clause (falsified clause) DPLL will 
backtrack—we have hit a deadend.

CDCL also backtracks but first learns and remembers a new 
clause. This new clause will block this deadend and 
hopefully other deadends.
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Clause Learning
● X

∎ A
∎ ¬B
∎ C

● ¬Y
∎ D
∎ ¬E
∎ F

● Z
∎ H
∎ I
∎ ¬J
∎ ¬K
(K,¬I,¬H, ¬F,E, ¬D,B)

● X,Y,Z: Decision Variables.
∎ A,¬B,C,D,¬E,F,H,I,¬J,¬K: forced by unit 

propagation
• (K,¬I,¬H, ¬F,E, ¬D,B): Conflict Clause
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Clause Learning
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• Each forced literal was forced 
by some clause becoming 
unit. 



Fahiem Bacchus, University of Toronto, 43

Clause Learning
● X

∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

Each clause reason contains
1.One true literal on the path 

(the literal it forced)
2. Literals falsified higher up on 

the path.
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Clause Learning
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

• We can resolve away any 
sequence of forced literals in 
the conflict clause.

• Such resolutions always yield 
a new falsified clause.

1. (K,¬I,¬H,¬F,E, ¬D,B), (D,B,Y) è
(K,¬I,¬H,¬F,E,B,Y), (¬B, A) à
(K,¬I,¬H,¬F,E,A,Y)

2. (K,¬I,¬H,¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) è
(¬I,¬H,¬F,E, ¬D,B)

3. (K,¬I,¬H,¬F,E, ¬D,B), (H,B,E,¬Z) è
(K,¬I,¬F,E,¬D,B,¬Z)

4. …



Fahiem Bacchus, University of Toronto, 45

Clause Learning

• Any forced literal x in any conflict clause can be 
resolved with the reason clause for –x to generate a 
new conflict clause.

• If we continued this process until all forced literals are 
resolved away we would end up with a clause 
containing decision literals only (All-decision clause).

• But empirically the all-decision clause tends not be very 
effective.
– Too specific to this particular part of the search to be 

useful later on.
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1-UIP clauses

• The standard clause learned is a 1-UIP clause
• This continually involves resolves the trail deepest literal 

in the conflict clause until there is only one literal left in 
the clause that is at the deepest level.
• Since every resolution step replaces a literal by 

literals falsified higher up the trail, we must eventually 
achieve this condition

• The sole remaining literal at the deepest level is 
called the asserted literal. 



Fahiem Bacchus, University of Toronto, 47

1-UIP Clause
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)

1. (K,¬I,¬H, ¬F,E, ¬D,B), (¬K,¬I,¬H,E,B) 
è (¬I,¬H, ¬F,E, ¬D,B)

2. (¬I,¬H, ¬F,E, ¬D,B), (I,¬H,¬D,¬X)
è (¬H, ¬F,E, ¬D,B,¬X)

The 1-UIP clause shows 
that ¬H was actually 
implied at the previous 
decision level.

But before the SAT solver 
didn’t know this.  
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1-UIP clauses

• A 1-UIP clause is sometimes called an empowering 
clause. Once we have it, UP will  force a literal that it 
wasn’t able to before. 
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1-UIP clauses
• The 1-UIP clause forces its asserted literal at a prior 

decision level (if we had the clause before we would 
have forced the asserted literal before).

• We backtrack so as to fix the trail to account for the 
new 1-UIP clause.

• The asserted literal is forced as soon as all other literals 
in the clause became false. The assertionLevel is the 
second deepest decision level in the clause (the 
asserted literal is at the deepest level)

• So we backtrack to that level (not undoing the decision 
or anything forced at that level), add the asserted 
literal to the trail, with the 1-UIP clause as its reason, 
then apply UP again.
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1-UIP Clause
● X

∎ A ç …
∎ ¬B ç (¬B, ¬A)
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …

● Z
∎ H ç (H,B,E,¬Z)
∎ I ç (I,¬H,¬D,¬X)
∎ ¬J ç (¬J,¬H,B)
∎ ¬Kç (¬K,¬I,¬H,E,B)

(K,¬I,¬H, ¬F,E, ¬D,B)
(¬H, ¬F,E, ¬D,B,¬X)

● X
∎ A ç …
∎ ¬B ç …
∎ C ç …

● ¬Y
∎ D ç (D,B,Y)
∎ ¬E ç …
∎ F ç …
∎ ¬H ç (¬H,¬F,E, ¬D,B,¬X)

More unit 
propagation
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1-UIP clauses
• Note that we are jumping back across incompletely 

tested decisions. 
• We backtracked over Z, but we don’t know if ¬Z might not 

have lead to a solution. 
• All we know is that the trail is now patched to account for the 

newly learnt clause
• Search is no longer “systematic” like DPLL
• Instead completeness comes from learning clauses.

• (a) it is cheap to backtrack, (b) going back far enough 
to fix the trail makes the implementation more efficient, 
(c) allows the search to explore a different area of the 
space.
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1-UIP clauses
• If the 1-UIP clause is unit we go back to level zero—

before any decision. So clause learning can generate a 
number of restarts.
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VSIDS Heuristic
• Heuristic for selecting next decision literal (variable)
• Variable State Independent Decaying Sum
• Intuitions vary: but VSIDS is thought to encourage 

resolutions involving most recently learnt clauses.
• A counter for each variable. Increment the counter of all 

variables in each clause that is used in the 1-UIP clause learning 
process.

• Periodically divide all counts by 2.
• Pick the unassigned variable with highest count at each 

decision
• Low overhead (counters updated only for variables in 

conflict). Variables kept on heap ordered by counter.
• Causes the SAT solver to branch on variables that 

appeared in recent learnt clauses.
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Phase Saving/Restarts
Phase saving
• We decide to branch on a variable: what literal to try 

first? 
• Use the literal that was the most recent setting of the 

variable on the trail. 
Restarts
• Periodically restarting the solver (undoing all decisions) 

is useful.
• Various strategies have been investigated for when 

to restart. 
• Note that because of phase saving and the fact 

that the VSIDS scores are unchanged, restarts tend 
to put back the same literals on the trail---but in a 
different order. 
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Resolution Power
• With these various features it can be show that CDCL 

solvers (Conflict Driven Clause Learning) are no longer 
limited to tree-resolution instead they can p-simulate
general resolution

• Remains an open question whether or not CDCL 
without restarts is as powerful as general resolution. 
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Other Techniques
1. Clause reduction: Once we have the 1-UIP clause we 

can try to resolve away further literals in such a way 
that the clause is reduced in size. 

2. Forgetting Learnt Clauses: We remember how many 
different decision levels appear in the learnt clause. 
This is called the LBD number for the learnt clause.
a) Every 10,000 learnt clauses we sort all of the learnt 

clauses by LBD, and remove that ½ that has highest 
LBD (but keep all clauses with LBD 2).

3. Preprocessing: apply exhaustive resolution steps to 
eliminate variables, equality reduction, subsumption, 
etc. 

4. In processing—apply the preprocessing simplifications 
at various points during solving. 
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Assumptions
• Assumptions. A useful technique is solving the formula F

subject some set of literals called assumptions: 

A = {l1, l2, …, lk}

• The sat solver returns a truth assignment satisfying the 
formula and also making all assumptions literals true. 

• If no such truth assignment exists it returns a clause 

c = (¬l1c, ¬l2c, ..., ¬ljc) 

Such that F ⊧ c and lic∈ A. 
This clause says that at least one of these literals must 
be false. (It specifies a subset of A that cannot be 
made true).
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Assumptions
• This is achieved by forcing the SAT solver to pick the 

assumption literals as its first set of decisions.
• Initially every decision is the next unassigned literal in A, 

until here are no more unassigned literals in A. 
• After assigning all literals in A we then continue the 

normal SAT solving process with the freedom to pick 
any decision variables we want.
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Assumptions
• Either the sat solver finds a satisfying assignment (that 

makes A true) or it learns a clause b falsified by the 
levels containing the decisions over A.

• If we resolve away all forced literals in b to obtain an 
all-decision clause which is the clause c we want.
• All decisions at and above the level b is falsified are 

assumption literals



MaxHS a hybrid approach to solving 
Maxsat
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Outline

} General Purpose Exact optimizers

} MaxSat—an optimization version of SAT

} MaxHS

} Empirical Results
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General Purpose Exact Optimizers



Discrete Optimization

} Discrete Optimization problems are ubiquitous in AI
} Decision making problems with a payoff we want to 

maximize.
} Problems that we want to solve that can be formulated as an  

optimization problems.

} Often these optimization problems are NP-Hard so a 
major challenge is to find solutions within feasible 
resource limits.
} The resources available depend on the application.
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Discrete Optimization

} Much work has been done on problems with special 
structure, e.g., convex, sub modular, bounded tree-
width. This structure admits sophisticated analysis and 
often poly-time exact or approximation algorithms.

} However, not all problems have such structure.
} Often the theoretical approximation guarantees are 

weaker than needed in practice.  
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General Purpose Optimizers

} Exact general purpose optimizers, e.g., MIP solvers and 
more recently MaxSat solvers can be viable 
alternatives.

} The worst case complexity often makes people shy 
away from using such solvers.

} However such solvers are seen tremendous advances 
in performance in the past couple of decades, and in 
practice can often provide a better solution.

} Many industrial problems are solved with IP and SAT 
solvers.    
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General Purpose Optimizers

} The main attractive feature of such solvers is that they 
do not require that the input problem has any particular 
type of structure.

} So they can be applied to a wider range of problems, or 
applied to a more accurate model of the problem.  
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MaxSat via IP and SAT Solvers

} MaxSat is an optimization version of the SAT problem 
that can represent a range of optimization problems.

} In this talk I will discuss a hybrid solver for MaxSat that 
utilizes both SAT and IP solving.
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MaxSat



The MaxSat Problem

} In theoretical studies MaxSat is taken to be the problem 
of satisfying a maximum number of clauses of a CNF 
formula. 

} We can generalize this to associate a weight with each 
clause and make the problem be one of satisfying a 
maximum weight of clauses.
} Equivalently MaxSat can be seen as a minimization problem: 

minimize the weight of the falsified clauses. 
} This generalization is far more useful for modeling 

practical problems.
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The MaxSat Problem

} Input: 
} a propositional formula in Conjunctive Normal Form

} A conjunction of clauses
} Each clause is a disjunction of literals
} Each literal is a propositional variable or the negation of a 

propositional variable.
} A cost (weight) associated with falsifying each clause

} Output:
} A MaxSat Solution: a truth assignment of minimum cost

} This truth assignment falsifies a minimum weight of clauses
} Equivalently it satisfies a maximum weight of clauses.
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The MaxSat Problem

} If the weight of a clause is infinite then it costs an 
infinite amount to falsify it, i.e., it must be satisfied.

} Infinite weight clauses are called hard clauses, finite 
weight clauses are called soft clauses.
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Soft Clauses
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Hard Clause
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0
0 0 1 5
0 1 0
0 1 1 ∞

∞
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 4
0 0 1 5
0 1 0
0 1 1 ∞

∞
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 4 + 10
0 0 1 5
0 1 0
0 1 1 ∞

∞
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 14
0 0 1 5
0 1 0
0 1 1 ∞

∞
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Max-SAT Example

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

l1 l2 l3 Cost
0 0 0 14
0 0 1 5
0 1 0
0 1 1 ∞

∞

Max-SAT Solution

cost(l1, l2,¬l3) = 3
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MaxSat
} Unweighted version is complete for the complexity class 

FPNP of functions computable in polynomial time given 
access to an NP oracle

} APX-Complete (no polynomial time approximation 
scheme unless P=NP)

} Many important problems fall into this class and can 
therefore be efficiently expressed as MaxSat

} Bioinformatics, Electronic Design Automation, 
Operations Research, various planning problems…

} The MaxSat encoding is often quite natural.
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Example, correlation clustering

} A collection of objects that we wish to partition into clusters 
of similar objects.

} Represent the objects as vertices in a graph.
} Each edge has a weight---negative if the objects it connects 

are not similar, positive if the objects are similar. 

} Goal: Partition the vertices so that the following sum is 
minimized:
} weight(e) for every edge e with positive weight where its two 

vertices are in different clusters
} -weight(e) for every edge e with negative weight where its two 

vertices are in the same cluster. 
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Example, correlation clustering

} Unknown number of clusters, if we have n objects we can have n 
clusters (0—n-1). 

} For each object use log2(n) propositional variables whose F/T 
(0/1) values represent the base 2 encoding of that object’s 
cluster.  

} Two objects o1, o2 with an edge between them are in the same 
cluster if propositional variable s1,2 is true. 

s1,2 ó all bits in the bit encodings are the same
a set of hard clauses.

} Soft clauses, for every pair of objects o1, o2, where wt is the 
weight of the edge between these objects: 

(¬s1,2; wt) when wt > 0

(s1,2; -wt)  when wt < 0
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Example, Correlation Clustering 
Approximation quality
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} SDPC—approximation based on rounding a semi-definite program
} KC—greedy approximation
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Benefits of MaxSat
Provably optimal solutions

Example: Correlation clustering by MaxSat
[Berg and Järvisalo, 2016]
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Reported Applications of MaxSat
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MaxSat Applications

probabilistic inference [Park, 2002]
design debugging [Chen, Safarpour, Veneris, and Marques-Silva, 2009]

[Chen, Safarpour, Marques-Silva, and Veneris, 2010]
maximum quartet consistency [Morgado and Marques-Silva, 2010]
software package management [Argelich, Berre, Lynce, Marques-Silva, and Rapicault, 2010]

[Ignatiev, Janota, and Marques-Silva, 2014]
Max-Clique [Li and Quan, 2010; Fang, Li, Qiao, Feng, and Xu, 2014; Li, Jiang, and Xu, 2015]
fault localization [Zhu, Weissenbacher, and Malik, 2011; Jose and Majumdar, 2011]
restoring CSP consistency [Lynce and Marques-Silva, 2011]
reasoning over bionetworks [Guerra and Lynce, 2012]
MCS enumeration [Morgado, Liffiton, and Marques-Silva, 2012]
heuristics for cost-optimal planning [Zhang and Bacchus, 2012]
optimal covering arrays [Ansótegui, Izquierdo, Manyà, and Torres-Jiménez, 2013b]
correlation clustering [Berg and Järvisalo, 2013; Berg and Järvisalo, 2016]
treewidth computation [Berg and Järvisalo, 2014]
Bayesian network structure learning [Berg, Järvisalo, and Malone, 2014]
causal discovery [Hyttinen, Eberhardt, and Järvisalo, 2014]
visualization [Bunte, Järvisalo, Berg, Myllymäki, Peltonen, and Kaski, 2014]
model-based diagnosis [Marques-Silva, Janota, Ignatiev, and Morgado, 2015]
cutting planes for IPs [Saikko, Malone, and Järvisalo, 2015]
argumentation dynamics [Wallner, Niskanen, and Järvisalo, 2016]
...



Reported Applications of MaxSat

Fahiem Bacchus, University of Toronto85

} Growing number of applications being reported in the 
last couple of years.

} Advances in MaxSat Solver technology are central to 
this increasing success 



Improvements in MaxSat Solving
UNWEIGHTED (2008-2016)
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Improvements in MaxSat Solving
WEIGHTED (2008-2016)
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Problem Sizes 
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} Largest problems solved in MaxSat Evaluation, 
>6,000,000 variables and > 13,000,000 clauses 
(solved by MaxHS in < 800 sec.)

} MaxSat is considerably harder than SAT, for SAT 
problems as big as >10,000,000 variables and 
>50,000,000 clauses have been solved. 



MaxHS



Prior Methods for Solving MaxSat 

} Most MaxSat solvers exploit a SAT solver to 
solve a series of SAT decision problems

} Relaxation/blocking variables are used to 
control which clauses must be satisfied.
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Relaxation Variables

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fb = (¬l1∨b1), (l2 ∨b2 ), (¬l3∨b3), (l2 ∨ l 3∨b4 ), (l1∨¬l2 ){ }
• Add a fresh variable      to each soft clause
• Drop the clause weights
• is satisfiable if hards are satisfiable, since 

setting      to true removes the original soft 
clauses

bi

bi
Fb
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Basic Sequence of SAT
} Suppose all soft clauses have weight 1
} Add a cardinality constraint over the relaxation 

variables, limiting how many can be assigned to True 
(i.e., how many softs can be falsified)

bi
i
∑ ≤ k
#

$
%

&

'
(Fb ∧ CNF SAT 

Solver
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Basic Sequence of SAT
} Observation: If k is the minimum number of softs that 

can be falsified then the formula is satisfiable, and 
each satisfying solution is a is a Max-SAT solution

bi
i
∑ ≤ k
#

$
%

&

'
(Fb ∧ CNF SAT 

Solver
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Basic Sequence of SAT
} This approach can be extended to non-uniform weights 
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SAT 
Solver

F b ^ CNF (
X

costi ⇥ bi  k)



Basic Sequence of SAT
} Can no longer use simple cardinality constraints 
} One has to encode linear equations over the b-variables 

into CNF to capture the different costs (pseudo-boolean
constraints). 

} Such constraints are hard for the SAT solver.
} Even for the unweighted case the sum over all b-

variables requires a very large and inefficient 
encoding—when you have thousands/millions of soft 
clauses. 
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Core Based SAT approaches
} This simple approach can be significantly improved by 

utilizing cores.
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Cores

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Core: K1 = {(¬l1,3), (l2, 4)}

• A core is a set of soft clauses that is 
inconsistent with the hard clauses
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Cores

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Core: K1 = {(¬l1,3), (l2, 4)}

• Using {-bi | bi is a blocking variable} as 
assumptions SAT solvers can return a core.  
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Cores

• Assumptions are a set if literals. When given 
assumptions A the SAT solver will either find a 
satisfying model in which every literal in A is true 

• Or it will return a clause containing only negated 
literals of A.

• So when A = {-bi | bi is a blocking variable} the 
returned clause will be of the form
(b1, b3, b5, b6, …) a set of positive b-literals

• bi = True è soft clause ci is falsified. So this 
clause specifies a subset of soft clauses at least 
one of which must be falsified: a core.
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Core Based MaxSat Algorithms

} Observation: at least one of the clauses in a core will be 
falsified by the Max-SAT solution

} Idea: given a core, we can use cardinality constraints 
over only the relaxation variables of the soft clauses in 
the core to express this condition.

} These are typically much smaller than cardinality 
constraints over all relaxation variables. 
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Core Based MaxSat Algorithms

} The cardinality constraint “relaxes” the formula…it 
allows one of these soft clauses in the core to be 
falsified.

} If that relaxation is insufficient another core will be 
found, and the formula can be further relaxed.
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Core Based MaxSat Algorithms

} Today, many modern MaxSat solvers 
such as RC-2, WBO, and Eva500 are 
based on this idea.

} Works well when 
1. Very few soft clauses are falsified in the 

optimal model (< 200)
2. Very small number of distinct clause 

weights (< 3)
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The MaxHS Approach
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Motivation
} Existing MaxSat solvers suffer because they create 

harder and harder SAT problems by adding cardinality 
constraints over the b-variables.

} The situation is worse when soft clauses have diverse 
weights--SAT solvers are not very good at dealing with 
pseudo Boolean constraints. 
} SMT-solvers don’t offer any significant improvement

} MaxSat problems can also be converted to an Integer 
Program. But IP solvers perform poorly because the 
linear constraints arising from the clauses often yields 
a poor linear relaxation.
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The MaxHS Approach
} The SAT problems are subsets of the original Max-SAT 

formula
} They are likely to be no harder for a SAT solver than the 

original formula 
} All numeric reasoning about costs is delegated to an 

Integer Programming solver (CPLEX)
} designed for optimization
} costs can be floating point numbers
} the underlying LP + Cuts approach is very powerful
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Multiple Cores
} A core says that at least one of the soft clauses in it 

must be falsified
} Idea: generalize this observation to multiple cores

} [Bacchus, Cho, Davies 2010, Helmert & Bonet 2010]
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Hitting Sets

K1 = {C1,C3,C10}
K2 = {C3,C4}
K3 = {C5,C9,C11}

Cores

• A hitting set is a subset of the soft clauses, 
that includes at least one clause from each 
core
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Hitting Sets

K1 = {C1,C3,C10}
K2 = {C3,C4}
K3 = {C5,C9,C11}

Cores
hs1 = {C3,C5}
cost(hs1) = wt(C3)+wt(C5 )

• A hitting set is a subset of the soft clauses, 
that includes at least one clause from each 
core

• We are interested in hitting sets of 
minimum cost
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Cores and hitting sets
} Remember 

} A set of soft clauses 𝜿⊆ S is a core of F if 𝜿∪ H is UNSAT
} Feasible solutions satisfy the hard clauses H

} Let K be any set of cores of F and π any feasible 
solution. π must falsify at least one soft clause of every 
core in K.

} Let A = {c | 𝜋 ⊭ c} be the set of clauses falsified by 𝜋
} Then A is a hitting set of K (non-empty intersection with 

every member of K). 
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Cores and hitting sets
} Let MCHS(K) be a minimum cost hitting set of K–this is a set 

of soft clauses. 
} For every feasible solution 𝜋

cost(π ) = wt(A) ≥ wt(MCHS(K))
} The weight of a minimum cost hitting set of any set of cores 

is a lower bound on the cost of an optimal solution. 
} Therefore, for any set of cores K and any feasible solution π 

if cost(π ) = wt(MCHS(K)), π must be an optimal solution.

} This leads to a simple algorithm for finding an optimal 
solution.
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MaxHS Theorem

Theorem
If a truth assignment π satisfies       where       is a 
minimum cost hitting set of a collection of cores, then π is 
a Max-SAT solution.

F \ hs hs

Proof Sketch: π has cost at most cost(hs) since it 
satisfies all clauses not in hs. But cost(hs) is a lower 
bound on the cost of the Max-SAT solution.

cost(π)       cost(hs)       mincost(F)       cost(π) ≤ ≤
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hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)
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hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)
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UNSAT

SAT

Call	the	sat	solver	to	solve	
the	hard	clauses	along	
with	assumptions	that	
force	all	of	the	soft	clauses	
to	be	satisfied	(except	for	
the	softs	in	hs)



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

114

UNSAT

SAT

𝜋 satisfies	H	and	all	soft	
clauses	except	possibly	
the	softs	in	hs.	So	
cost(𝜋)	≤	wt(MCHS(𝒦))  

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution
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UNSAT

SAT

If UNSAT the SAT solver the 
conflict returned is a core

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution
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UNSAT

SAT

The returned core must be 
new, not previously in 𝒦-—the 
new core contains no softs 
from hs, but every core in 𝒦
contains a soft of hs. 

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)
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UNSAT

SAT

This process must terminate as 
there are only a finite number 
of cores.



MaxHS

} MaxHS is using SAT reasoning to incrementally 
construct an IP problem from the input MaxSat
problem.

} If the set of soft clauses {c1, c4, c6, c7} is a core, 
the IP will contain the linear constraint

where the bi are the clause relaxation variables 
indicating that at least one of them is true (=1).

} These constraints specify a hitting set (set-
cover) problem.
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MaxHS
} Set cover is hard in general, but MIP solvers 

like CPLEX are quite effective on set-cover.

} The approach is related to logic based 
Benders (Hooker). Also to the implicit hitting 
set formalism of Karp.

} This re-encoding can be much more effective 
than directly trying the solve the MaxSat
problem with an IP solver 

Fahiem Bacchus, University of Toronto119



Behavior of MaxHS

} MaxHS is incremental
} Every iteration produces a lower bound on the 

MaxSat solution

} Three potential sources of exponential 
behaviour:
1. SAT Solving
2. Solving the NP-Hard minimum hitting set 

problem
3. Number of iterations of SAT solving/hitting 

set computations
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Where is the time spent?

Solved Unsolved
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Improving the basic algorithm 

Solving the MCHS problem after every single core is too 
slow
1. Give better constraints to CPLEX
2. Generate constraints more cheaply without an 

expensive MCHS computation
3. Give CPLEX multiple constraints at a time thus 

reducing the total number of calls to CPLEX
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Better Constraints: Minimal Cores
} The cores returned by the SAT solver may contain 

irrelevant clauses
} A minimal core is one for which no proper subset is a 

core
} How to find minimal cores?

} a simple algorithm that tests if each clause can be 
removed from the core with a call to the SAT solver.

} There are improved algorithms for minimizing cores 
(Bacchus & Katsirelos CAV-2015). Some of these ideas 
have been exploited in MaxHS.

} Finding minimal cores is too expensive, but we can 
spend some time making them smaller with these 
algorithms.
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Cheaper Constraints: Seeding
} By examining the input CNF we can find constraints 

that can be feed directly into CPLEX.
} Seed CPLEX with a collection of such constraints, as a 

preprocessing step
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Relaxation Variables

F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fb = (¬l1∨b1), (l2 ∨b2 ), (¬l3∨b3), (l2 ∨ l 3∨b4 ), (l1∨¬l2 ){ }

• Don’t really need a relaxation variable for unit 
soft clauses. 

• E.g., indicates that the soft clause            is 
falsified.
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Cheaper Constraints: Equivalence Seeding

• Examine input formula for clauses all of whose 
variables appear in unit soft clauses.

(l1,3) (l2, 2) (l3,10)

• The constraint

can be added to the IP solver.
Note that now the IP solver is not solving a pure set-
cover problem.  It is finding a constrained hitting set.

(l1∨¬l2 ∨¬l3)
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Experimental Results For these improvements
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Multiple Constraints: Non-Optimal Hitting Sets
} At each iteration, a single constraint is added to the IP 

model and the hitting set problem is solved to 
optimality again

} Goal: reduce the number of times the hitting set 
problem must be solved to optimality.

} Use heuristics to find a non-optimal hitting set instead 
of an optimal one.
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hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)
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hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	MCHS(𝒦)
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Use a non 
minimum cost 
hitting set 
instead.



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
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hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
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Ok, always returns new 
core



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

𝜋 is an 
optimal 
solution

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦

133

UNSAT

SAT

But now, we 
cannot conclude 
𝜋 is	optimal



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	
install	as	new	
incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
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However 𝜋
might	be	lower	
cost	model	than	
we	have	seen	
before



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	
install	as	new	
incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
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hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	
install	as	new	
incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
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UNSAT

SAT

We must continue 

Make sure that 
we don’t cycle 
returning the 
same hs as 
before! 



hs = {}
𝒦 = {}

The IHS Algorithm

SatAssume
(H,	S\hs)

If	𝜋 is	the	
cheapest	model	
found	install	as	
new	incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
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To terminate we must 
occasionally compute 
a MCHS. 



hs = {}
𝒦 = {}

SatAssume
(H,	S\hs)

If	𝜋 is	the	
cheapest	model	
found	install	as	
new	incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
Occasionally (via some policy):

hs = MCHS(𝒦)
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an MCHS. 



hs = {}
𝒦 = {}

SatAssume
(H,	S\hs)

If	𝜋 is	the	
cheapest	model	
found	install	as	
new	incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
Occasionally (via some policy):

hs = MCHS(𝒦); LB = wt(hs)

139

UNSAT

SAT

MCHS provides a 
lower bound!



hs = {}
𝒦 = {}

SatAssume
(H,	S\hs)

If	𝜋 is	the	cheapest	
model	found	install	as	
new	incumbent.	
If LB ≥ cost(incumbent) 

return incumbent

𝒦 = 𝒦 U {softs in returned conflict}
ℎ𝑠 =	any	hitting	set	of	𝒦
Occasionally (via some policy):

hs = MCHS(𝒦); LB = wt(hs)
If LB ≥ cost(incumbent) return incumbent
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UNSAT

SAT

Lower bound meets 
upper bound 
becomes new 
termination condition.



MaxHS Performance 2013
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MaxHS Development
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2013 2014 2015

4410 4613 4862

} Numerous improvements since 2013.
} Measuring the number of problems solved within a time 

limit of 1800 sec. and 3.5 GB (on the same machine) 
here is how the software has improved. 



Recent Developments

Fahiem Bacchus, University of Toronto143

} Use CPLEX to compute non-optimal hitting sets
} Use call backs in CPLEX. If CPLEX finds a feasible 

solution that is better than the current best solution, we 
stop CPLEX and use its feasible solution as a non-
optimal hitting set.



Reduced cost fixing (CP-2017).
} By finding feasible but not optimal solutions using non-

optimal hitting sets, we have an upper bound. 
} The cost of a MCHS to the current set of cores is a 

lower bound.
} These two bounds allow us to use the OR technique of 

reduced cost fixing. 

} Fahiem Bacchus, Antti Hyttinen, Matti Jarvisalo, and 
Paul Saikko; Reduced Cost Fixing in MaxSAT, CP 2017
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Reduced cost fixing (CP 2017).
} Solve the Linear program arising from the linear 

relaxation of the current CPLEX model. 
} The optimal LP solution provides a “derivative” cost for 

changing the value of the variables that have been set to 
their upper or lower bound in the optimal solution. These are 
called the reduced costs of the variables.

} The LP variables are b-variables set to 0 (satisfy a soft 
clause) or 1 (falsify a soft clause). So if in the LP the cost of 
the LP solution + reduced cost(bi) > UPPER BOUND, we can 
fix that b-variable to 0 converting a soft clause to a hard 
clause in the SAT model
} No model with that variable set to 1 will have cost less than the 

current incumbent. 
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Reduced cost fixing (CP 2017).
} Similar logic applies to some b-variables set to 1: no 

better model exists if we require that soft clause to be 
satisfied—so always falsify it in the SAT model.

Fahiem Bacchus, University of Toronto146
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Fig. 2. Speedup histograms over instances on which reduced cost fixing would force some vari-
ables in terms of log2 of CPU time with fixing and without fixing. Left: under 30-minute per-
instance time limit, right: under 5-hour per-instance time limit.

Fig. 3. Scatter plots of CPU times with and without reduced cost fixing, omitting instances 5024
where no fixing occurred. Left: all instances; middle: unweighted instances; right: weighted. in-
stances.

6 Conclusions

We proposed the use of reduced cost fixing—a standard approach in IP—in MaxSAT
solving as a means of utilizing bounds information during search to infer knowledge
of soft clauses which are satisfied or left falsified by some optimal solutions. We ex-
plained how reduced cost fixing can be integrated into the implicit hitting set approach
to MaxSAT by performing reduced cost analysis directly on the LP relaxation of the
hitting-set IP already utilized in the IHS search routine. We showed through an exten-
sive empirical evaluation that reduced cost fixing can provide considerable speedups
improving on the overall performance of MaxHS.
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MaxSMT
Implicit Hitting Set Algorithms for Maximum Satisfiability 
Modulo Theories; Katalin Fazekas, Fahiem Bacchus, 
Armin Biere IJCAR-2018
} Cplex--hitting set optimization
} SAT—propositional reasoning
} SMT—theory reasoning

} We provided an abstract reasoning calculus that allows 
one to mix these types of reasoning in flexible ways so 
as to solve optimization problems with SMT theories. 
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MaxHS in the 2017 Evaluation UNWEIGHTED
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Complete track: Unweighted

880 instances

Solver #Solved Time (Avg)
Open-WBO-RES 652 129.9
MaxHS 651 182.61
maxino 639 99.14
MSUSorting 622 171.96
QMaxSATuc 573 165.19

I Best unweighted solvers take advantage of unsatisfiable cores
I How do they compare against last year solvers (Open-WBO-MSE16)

and general optimization solvers (Z3, CPLEX)?

15 / 25



MaxHS in the 2017 Evaluation UNWEIGHTED
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Complete track: Unweighted
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MaxHS in the 2017 Evaluation WEIGHTED
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Complete track: Weighted
767 instances

Solver #Solved Time (Avg)
MaxHS 538 236.46
QMaxSAT 503 385.18
QMaxSATuc 499 397.82
maxino 498 202.1
Open-WBO-OLL 468 231.88

I MaxHS is much better than the remaning solvers:
I Uses implicit hitting set approach that combines SAT and IP

I QMaxSAT is a good solver for weighted even though:
I encodes PB constraints into CNF
I does not take advantage of unsatisfiable cores

I How do they compare against last year solvers (MaxHS-MSE16) and
general optimization solvers (Z3, CPLEX)?

16 / 25



MaxHS in the 2017 Evaluation WEIGHTED
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Complete track: Weighted
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MaxHS in 2018 Evaluation
} Outperformed by RC-2 on the instances used in that 

evaluation!
} But on larger test set still outperforms RC-2 on 

weighted instances.

} Nevertheless indicates that the pure SAT based 
methods do have some effective features.
} working on importing some key ideas from these solvers into 

the MaxHS approach.
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MaxHS is Open Source

} www.maxhs.org
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Future Work

} MaxHS represents only one way of 
hybridizing IP and SAT. Other methods 
worth investigating.
} Could have mixed input models with both 

clauses and linear constraints.
} Could use MaxSat as a sub-IP solver for 

cutting plane generation.
} Applications in matching and other 

areas.
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Thank you
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Solving MaxSat with IP

} A simple way to solve MaxSat is to 
encode it as an IP.

} Add relaxation variables to all soft 
clauses.

} Convert each clause to a linear 
constraint.

} Set the objective function to be the 
minimization of sum of the relaxation 
variables weighed by their cost.
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Solving MaxSat with IP
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F = (¬l1,3), (l2, 4), (¬l3,1), (l2 ∨ l 3 ,10), (l1∨¬l2,∞){ }

Fb = (¬l1∨b1), (l2 ∨b2 ), (¬l3∨b3), (l2 ∨ l 3∨b4 ), (l1∨¬l2 ){ }

min = 3b1 + 4b2 + b3 + b4
1− l1 + b1 ≥1
l2 + b2 ≥1...


