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Outline

How to build reliable distributed systems?

What is consensus, and what is it good for?

What is ‘the simplest’ practical form of Byzantine consensus?

How to implement it as efficiently as possible?

How can we scale ‘blockchains’ beyond faster consensus?



Consensus as a primitive has been 

studied since the 1980s.

Bitcoin proposed “Nakamoto

Consensus”. Ethereum uses it.

Pro: open membership through PoW.

Con: Weak finality, and energy hungry.

Renewal of interest in “traditional” 

consensus protocols.

Smart contracts, distributed ledgers and 

Blockchains

Why care about 

Consensus?



Set of network nodes, that may be 

subject to failures.

Consensus is a joint network protocol to 

make a joint decision.

Agreement (safety) – they want to all 

take the same decision.

Liveness & finality – they all eventually 

take a decision, and it is final.

Single decision or sequence of decisions 

(optimization)

Building block of reliable distributed systems.

What is 

consensus?

++



Consensus is key to 

reliable distributed 

systems

State machine replication paradigm 

for secure distributed computing 

(Fred Schneider, 1990)

All replicas start at State 0 and 

execute the same sequence of 

operation resulting in the same state 

i+1.

Action 1

Action 2

Action 3

Action 4

Consensus
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Replica 
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• Network model: Synchronous, 

asynchronous, partial synchrony.

• Failure model: crash-fail, crash-

recovery, byzantine.

• Initiator: Honest or byzantine.

Blockmania: asynchronous safety, 

partial synchrony for liveness.

Core: simplification of PBFT protocol 

(Liskov & Castro, 1999)

Flavors of 

consensus.



• FLP theorem: byzantine consensus is 

impossible, even with a single faulty node, 

under full asynchrony for a deterministic 

protocol. 

• Solution: partial synchrony.

After some period of asynchrony, the system 

becomes synchronous.

• Synchrony: messages from honest nodes 

are received within a known delay by other 

honest nodes.

• Tolerance to faulty nodes: 3f+1 

participants are required to tolerate up to f 

faulty nodes.

Limits to asynchronous Byzantine consensus

Hard Limits



BLOCKMANIA

The Blocmania Core Consensus Algorithm



Blockmania / PBFT core consensus (happy path, view 0)

• A participant n0 proposes a block for slot k. All need to agree on it, or agree on ‘no block’.

• Why: A byzantine participant n0 may propose conflicting blocks, or no blocks.

n0

n1

n2

n3

Pre-prepare Prepare Commit

Prepare first 

proposal

Wait for 2f+1

same propose

Wait for 2f+1

same commit
Deliver!

Commit 

messages 

must contain 

2f+1 prepare.

Instance (n0, k)

Bracha’s Reliable Broadcast (1985)



Insight: why do we need 2f+1 good nodes?

• Consider both n0 and n1 are byzantine – N < 3f+1. Example attack: failed agreement.

n0

n1

n2

n3

Pre-prepare Prepare Commit

Wait for 2f+1

same propose

Wait for 2f+1

same commit

Deliver Green!

Instance (n0, k)

Deliver thin Blue!

Incorrect 

operations = 

equivocation

But why not wait for the other 

honest one?
Prepare first 

proposal

Bad



Insight: why have a Commit Phase & View Change.

Why not simply use Bracha’s Broadcast (pre-propose & propose Phases)?

Liveness under faulty (or slow) initiator:

• Initiator does not sent a value for (n, k)?

• Initiator sends contradictory values for (n, k)?

• Initiator or network is too slow, and no delivery happens within some timeout?

Solution: view change & new view protocols:

• Nodes time out & broadcast “ViewChange”: 2f+1 messages,  new view for the same decision. 

• Must not rely on the same initiator -> might be faulty!

• Commit phase: safety across views. Must propose the same value if one was committed.

• How to tune timeouts?



View Change & New View Preserves Liveness (1)

• Consider n0 is byzantine – N = 3f+1. Example attack: failed termination for view 0.

n0

n1

n2

n3

Pre-prepare Prepare Commit

Wait for 2f+1

same propose

Wait for 2f+1

same commit

Instance (n0, k)

Incorrect 

Operations = 

Equivocation

Prepare first 

proposal

Bad

No progress



View Change & New View Preserves Liveness (2)

• Consider n0 is byzantine – N = 3f+1. 

n0

n1

n2

n3

Pre-prepare Prepare

Wait for 2f+1

same propose

Wait for 2f+1

View change

Instance (n0, k)

Prepare first 

proposal

Bad

View 0 View 1

View Change New View Prepare

MUST keep 

promises from 

previous views.

Timeout!



Blockmania vs PBFT View Change Simplifications

Traditional PBFT is complex: 

• Rotate leader.

• Decide on a sequence of decisions/transactions.

• New leader must propose a value for all previous positions.

Blockmania takes a simpler view:

• No special leader (but initiator for each instance).

• Each instance of the consensus protocol to decide one block per node / position. (ni, k) -> B.

• On new view either any node propose: (1) “no block” if none of the 2t+1 have committed or (2) 

the one value committed (there can only be one).

• Finality: either decide a block for a position, or “no block”.



• Agree on a block, or ‘no block’ for all 

nodes in round k.

• Apply a deterministic function to all 

transactions to get a total order.

• Hash of transaction = PoW.

• Order by fee.

• Commit then reveal + shared 

randomness for unbiasable order.

Order all transaction in decisions (ni, k)

From block 

agreement to full 

consensus



From Blockmania Instances to Full Consensus

• Run blockmania instance for each node and position

• Determine block Bi,k or no block NBi,k

n0

n1

n2

n3

B0,0

B1,0

B2,0

B3,0

B0,1

B1,1

NB2,1

B3,1

B0,2

NB1,2

B2,2

B3,2

B0,3

B1,3

B2,3

B3,3

Once all blocks in a round are 

determine, apply any deterministic 

ordering function to get a total order.

(1) By Hash = PoW

(2) By fee is what we do.



BLOCKMANIA

Efficient Network Instantiation



Sending explicit messages for all 

decisions is Naive.

Inefficiencies and complexities:

• Mixing code for networking (efficient 

asynchronous IO) & protocol logic are 

intermixed (correctness).

• Explicit evidence for all Commit, View 

Change, New View messages. Increase 

in size O(N3) to O(N4).

• Full separate 3-rounds for each 

decision.

Result: few PBFT quality implementations.

Costs & complexities

Problems with naïve

implementations



Block DAG + Finalization

Blockmania

Architecture

Node 2 Node 3

Node 0 Node 1

Finality Layer

Consensus Decisions

Block

Gossip

Protocol

(high perf. IO)

Consensus

and finality

layer 

(correctness)

Block

DAG



The Block DAG networking layer

Clients

Other Nodes

• List of Transactions

• List of other block 

hashes.

• Previous block hash

• Signature

Node n at time k

Block (n, k)

(n, k-1)

Other Nodes

Broadcast

Include Valid 

Transactions

Include Blocks 

with fully known 

history.



The finalization layer (interpreting core consensus)

n0

n1

n2

n3

k k+1 k+2 k+3

Decide for 

(n0, k)

Interpret as 

pre-prepare
Interpret as 

prepare

Interpret as 

commit
Interpret as 

deliver

Insight:

Since core protocol 

is deterministic can 

“simulate” the state 

of others through 

messages received 

and sent.



BLOCKMANIA

PERFORMANCE



Concrete WAN performance (Tx/sec) 

for different quorum sizes:

• 10 nodes (f=2) – 430K tx/sec

• 13 nodes (f=3) – 440K tx/sec

• 16 nodes (f=4) – 520K tx/sec

(not stat. different, Network bound).

Theory: O(N2) communication cost:

• Blocks are broadcast to all O(N).

• Blocks are O(N) (hashes)

• However, low constants:

20 bytes * N2 + transaction bytes * N

Small constants make a difference

Concrete 

Performance

& Theory



More blockmania topics:

• Byzantine clock sync.

• Encouraging partial synchrony.

• O(n) variant of Blockmania.

• Sequential variants.

• Reliable Broadcast variants.

• Statistical variants 

(‘AvalanceMania’).

• Integration with Proof of Stake.

And more topics for subsequent discussion

Questions so far?



SHARDING FOR BETTER SCALABILITY

Chainspace & SBAC

▷ The world needs more than 500K tx/second



Scalability is not the same as a high number 

of tx/sec.

Scalability: the more resources you invest in 

the system the more tx/sec you can process.

PBFT/Blockmania: not scalable by that 

definition (cost O(N) / O(N2)) in N resources.

Sharding is a generic solution.

Sharding: ensure that a transaction only 

uses O(1) to O(logN) resources to be 

processed.

A generic primer

How to build a 

scalable distributed 

system?



Naïve sharding: just partition all state, and have the many 

different shards not interact with each other.

Problem: How to ensure atomicity for opetations? Eg. I want a 

booking for a flight, hotel and conference to be “all-or-nothing”.

Naïve solution 2: No cross shard transactions (poor 

functionality); or super-shards deals with those (poor 

scalability).

Chainspace: Shards need to coordinate a little bit!

Not easy even in theory

Sharding

Challenges

Shard 0 Shard 1 Shard 2

Hotel Room
Flight Place Conf. Registration



Chainspace execution model

Objects: Objects contain state within the system.

Object status: Objects may be active, inactive or locked. (Shard shared state!)

Procedures: Take one of more objects as inputs, and produce one or more object outputs.

Object status: to succeed a procedure should use “active” objects, and turns them inactive.

Transaction: A trace of execution of one or more transactions, including all the input and output objects for 

one or more procedures.

Why many? To allow subroutine calls and cross contact calls.

Checkers: Code that takes the trace of execution of a single procedure and returns true if it conforms to the 

contract.

Note: clients execute procedures, and pack transactions for checkers to check in shards.

c.T(x,y) -> z

[c, T, (x,y), z]



Sharded Byzantine Atomic Commit Protocol (SBAC)

BFT

BFT

BFT

BFT

BFT

BFT

Client

Shard 0

(hi)

Shard 1

(fi)

Shard 2

(ci)

Book(hi, fi, ci) -> ri

Issue Commit / 

Abort. Lock.

Wait for decision from all 

shards: all commit = 

commit; otherwise abort.

Sequence to 

mutate 

shared state

Sequence to 

mutate 

shared state

Activate new 

objects. Release 

locks or invalidate.

(ci,ri)

SBAC guarantees either all process transaction (eventually) or none does. (Safety)

Liveness follows from the liveness of consensus within each shard.

(fi)

(hi)

checker



Performance (Summer 2017)

Validation: the more shards, the more transactions per second – linearly.



THE TRICKS THAT NEVER MAKE IT TO THE PAPER

SBAC in the real-world



Security Under Composition: an attack

Client

Shard 0

(x)

Shard 1

(y)

T(x,y) -> z

BFT

BFT

BFT

BFT

BFT

BFT

BFT

BFT

Adversary 

records “Commit” 

message from s0

Adversary 

records “Commit” 

message from s0

s1: Commit(T)

s1: Commit(T) s1: Abort(T)

(x)

(y,z)

Inconsistency: s0 

aborts T, and s1 

commits!

Solution: Associate with objects and transactions sequence numbers. Increment

Those wisely. And use them to discard replays. (See manuscript soon).



Performance improvements.

Problem: opening a lot of sockets is expensive. O(S2) in the number of shards per transaction.

Solution: Anyone can “drive this protocol” (thanks to Omniledger crew for this!)

BFT

BFT

BFT

BFT

BFT

BFT

Client

Shard 0

(hi)

Shard 1

(fi)

Shard 2

(ci)

Book(hi, fi, ci) -> ri

(ci,ri)

(fi)

(hi)

What is the client dies? No problem: anyone else can 

continue the protocol. Nodes in Shards; third parties; other 

clients that want to make progress …

Aggregate 

signatures 

here?

Optimistic: 

send to one 

node

Optimistic: 

send to one 

node



SBAC for fun, but mostly for profit.

BFT

BFT

BFT

BFT

BFT

BFT

Client

Shard 0

(fee)

Shard 1

(x)

Shard 2

(y)

Book(x, y, fee) -> z, fee’

(y,z)

(x)

(fee, fee’)

Problem: SBAC is an expensive protocol. Only execute for a fee!

Solution: make SBAC steps conditional on commit for fee shard.

Only make 

effort if the fee 

is committed

Design choice: consume 

fee if commit, or always?



Why procedures vs checkers?

Privacy?

How to support light clients?

What if one or more shards do not have an 

honest supermajority?

How to shard audit and verification?

How to assign nodes to shards?

Smart contract lifetime management?

Separate checkers from nodes?

Updating smart contracts?

Non-deterministic contracts?

Sybil attack resistant open system?

Proof of stake economics?

Dynamic fees according to congestion?

…

The joys of building real systems …

The missing details
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