
@chainspace_io @chainspace_official medium.com/chainspacewww.chainspace.io

The Blockmania Consensus Protocol &

Scaling Distributed Ledgers with Chainspace

A Research Talk

(zero marketing = zero liability)

Passion: Decentralization & Privacy

Co-Founder & Head of Research at

chainspace.io

Prof. of Security and Privacy Engineering

at University College London, London.

Before: Microsoft Research, KU Leuven,

Cambridge (academic dad: Ross Anderson)

A brief introduction

Who is

George Danezis?

UCL is actively recruiting faculty,

post-docs and PhD students in

security. Apply!

George Danezis, Dave Hrycyszyn:

Blockmania: from Block DAGs to Consensus.

CoRR abs/1809.01620 (2018)

Mustafa Al-Bassam, Alberto Sonnino, Shehar

Bano, Dave Hrycyszyn, George Danezis:

Chainspace: A Sharded Smart Contracts

Platform. NDSS 2018

And some sneak previews of unpublished

material.

Our research papers

Where to go find

out more

Outline

How to build reliable distributed systems?

What is consensus, and what is it good for?

What is ‘the simplest’ practical form of Byzantine consensus?

How to implement it as efficiently as possible?

How can we scale ‘blockchains’ beyond faster consensus?

Consensus as a primitive has been

studied since the 1980s.

Bitcoin proposed “Nakamoto

Consensus”. Ethereum uses it.

Pro: open membership through PoW.

Con: Weak finality, and energy hungry.

Renewal of interest in “traditional”

consensus protocols.

Smart contracts, distributed ledgers and

Blockchains

Why care about

Consensus?

Set of network nodes, that may be

subject to failures.

Consensus is a joint network protocol to

make a joint decision.

Agreement (safety) – they want to all

take the same decision.

Liveness & finality – they all eventually

take a decision, and it is final.

Single decision or sequence of decisions

(optimization)

Building block of reliable distributed systems.

What is

consensus?

++

Consensus is key to

reliable distributed

systems

State machine replication paradigm

for secure distributed computing

(Fred Schneider, 1990)

All replicas start at State 0 and

execute the same sequence of

operation resulting in the same state

i+1.

Action 1

Action 2

Action 3

Action 4

Consensus

Action 1

Action 2

Action 3

Action 4

Replica

1

Replica

2

Replica

3

Replica

4

State

i

State

i+1

Replica
Replica

Replica
Replica

• Network model: Synchronous,

asynchronous, partial synchrony.

• Failure model: crash-fail, crash-

recovery, byzantine.

• Initiator: Honest or byzantine.

Blockmania: asynchronous safety,

partial synchrony for liveness.

Core: simplification of PBFT protocol

(Liskov & Castro, 1999)

Flavors of

consensus.

• FLP theorem: byzantine consensus is

impossible, even with a single faulty node,

under full asynchrony for a deterministic

protocol.

• Solution: partial synchrony.

After some period of asynchrony, the system

becomes synchronous.

• Synchrony: messages from honest nodes

are received within a known delay by other

honest nodes.

• Tolerance to faulty nodes: 3f+1

participants are required to tolerate up to f

faulty nodes.

Limits to asynchronous Byzantine consensus

Hard Limits

BLOCKMANIA

The Blocmania Core Consensus Algorithm

Blockmania / PBFT core consensus (happy path, view 0)

• A participant n0 proposes a block for slot k. All need to agree on it, or agree on ‘no block’.

• Why: A byzantine participant n0 may propose conflicting blocks, or no blocks.

n0

n1

n2

n3

Pre-prepare Prepare Commit

Prepare first

proposal

Wait for 2f+1

same propose

Wait for 2f+1

same commit
Deliver!

Commit

messages

must contain

2f+1 prepare.

Instance (n0, k)

Bracha’s Reliable Broadcast (1985)

Insight: why do we need 2f+1 good nodes?

• Consider both n0 and n1 are byzantine – N < 3f+1. Example attack: failed agreement.

n0

n1

n2

n3

Pre-prepare Prepare Commit

Wait for 2f+1

same propose

Wait for 2f+1

same commit

Deliver Green!

Instance (n0, k)

Deliver thin Blue!

Incorrect

operations =

equivocation

But why not wait for the other

honest one?
Prepare first

proposal

Bad

Insight: why have a Commit Phase & View Change.

Why not simply use Bracha’s Broadcast (pre-propose & propose Phases)?

Liveness under faulty (or slow) initiator:

• Initiator does not sent a value for (n, k)?

• Initiator sends contradictory values for (n, k)?

• Initiator or network is too slow, and no delivery happens within some timeout?

Solution: view change & new view protocols:

• Nodes time out & broadcast “ViewChange”: 2f+1 messages, new view for the same decision.

• Must not rely on the same initiator -> might be faulty!

• Commit phase: safety across views. Must propose the same value if one was committed.

• How to tune timeouts?

View Change & New View Preserves Liveness (1)

• Consider n0 is byzantine – N = 3f+1. Example attack: failed termination for view 0.

n0

n1

n2

n3

Pre-prepare Prepare Commit

Wait for 2f+1

same propose

Wait for 2f+1

same commit

Instance (n0, k)

Incorrect

Operations =

Equivocation

Prepare first

proposal

Bad

No progress

View Change & New View Preserves Liveness (2)

• Consider n0 is byzantine – N = 3f+1.

n0

n1

n2

n3

Pre-prepare Prepare

Wait for 2f+1

same propose

Wait for 2f+1

View change

Instance (n0, k)

Prepare first

proposal

Bad

View 0 View 1

View Change New View Prepare

MUST keep

promises from

previous views.

Timeout!

Blockmania vs PBFT View Change Simplifications

Traditional PBFT is complex:

• Rotate leader.

• Decide on a sequence of decisions/transactions.

• New leader must propose a value for all previous positions.

Blockmania takes a simpler view:

• No special leader (but initiator for each instance).

• Each instance of the consensus protocol to decide one block per node / position. (ni, k) -> B.

• On new view either any node propose: (1) “no block” if none of the 2t+1 have committed or (2)

the one value committed (there can only be one).

• Finality: either decide a block for a position, or “no block”.

• Agree on a block, or ‘no block’ for all

nodes in round k.

• Apply a deterministic function to all

transactions to get a total order.

• Hash of transaction = PoW.

• Order by fee.

• Commit then reveal + shared

randomness for unbiasable order.

Order all transaction in decisions (ni, k)

From block

agreement to full

consensus

From Blockmania Instances to Full Consensus

• Run blockmania instance for each node and position

• Determine block Bi,k or no block NBi,k

n0

n1

n2

n3

B0,0

B1,0

B2,0

B3,0

B0,1

B1,1

NB2,1

B3,1

B0,2

NB1,2

B2,2

B3,2

B0,3

B1,3

B2,3

B3,3

Once all blocks in a round are

determine, apply any deterministic

ordering function to get a total order.

(1) By Hash = PoW

(2) By fee is what we do.

BLOCKMANIA

Efficient Network Instantiation

Sending explicit messages for all

decisions is Naive.

Inefficiencies and complexities:

• Mixing code for networking (efficient

asynchronous IO) & protocol logic are

intermixed (correctness).

• Explicit evidence for all Commit, View

Change, New View messages. Increase

in size O(N3) to O(N4).

• Full separate 3-rounds for each

decision.

Result: few PBFT quality implementations.

Costs & complexities

Problems with naïve

implementations

Block DAG + Finalization

Blockmania

Architecture

Node 2 Node 3

Node 0 Node 1

Finality Layer

Consensus Decisions

Block

Gossip

Protocol

(high perf. IO)

Consensus

and finality

layer

(correctness)

Block

DAG

The Block DAG networking layer

Clients

Other Nodes

• List of Transactions

• List of other block

hashes.

• Previous block hash

• Signature

Node n at time k

Block (n, k)

(n, k-1)

Other Nodes

Broadcast

Include Valid

Transactions

Include Blocks

with fully known

history.

The finalization layer (interpreting core consensus)

n0

n1

n2

n3

k k+1 k+2 k+3

Decide for

(n0, k)

Interpret as

pre-prepare
Interpret as

prepare

Interpret as

commit
Interpret as

deliver

Insight:

Since core protocol

is deterministic can

“simulate” the state

of others through

messages received

and sent.

BLOCKMANIA

PERFORMANCE

Concrete WAN performance (Tx/sec)

for different quorum sizes:

• 10 nodes (f=2) – 430K tx/sec

• 13 nodes (f=3) – 440K tx/sec

• 16 nodes (f=4) – 520K tx/sec

(not stat. different, Network bound).

Theory: O(N2) communication cost:

• Blocks are broadcast to all O(N).

• Blocks are O(N) (hashes)

• However, low constants:

20 bytes * N2 + transaction bytes * N

Small constants make a difference

Concrete

Performance

& Theory

More blockmania topics:

• Byzantine clock sync.

• Encouraging partial synchrony.

• O(n) variant of Blockmania.

• Sequential variants.

• Reliable Broadcast variants.

• Statistical variants

(‘AvalanceMania’).

• Integration with Proof of Stake.

And more topics for subsequent discussion

Questions so far?

SHARDING FOR BETTER SCALABILITY

Chainspace & SBAC

▷ The world needs more than 500K tx/second

Scalability is not the same as a high number

of tx/sec.

Scalability: the more resources you invest in

the system the more tx/sec you can process.

PBFT/Blockmania: not scalable by that

definition (cost O(N) / O(N2)) in N resources.

Sharding is a generic solution.

Sharding: ensure that a transaction only

uses O(1) to O(logN) resources to be

processed.

A generic primer

How to build a

scalable distributed

system?

Naïve sharding: just partition all state, and have the many

different shards not interact with each other.

Problem: How to ensure atomicity for opetations? Eg. I want a

booking for a flight, hotel and conference to be “all-or-nothing”.

Naïve solution 2: No cross shard transactions (poor

functionality); or super-shards deals with those (poor

scalability).

Chainspace: Shards need to coordinate a little bit!

Not easy even in theory

Sharding

Challenges

Shard 0 Shard 1 Shard 2

Hotel Room
Flight Place Conf. Registration

Chainspace execution model

Objects: Objects contain state within the system.

Object status: Objects may be active, inactive or locked. (Shard shared state!)

Procedures: Take one of more objects as inputs, and produce one or more object outputs.

Object status: to succeed a procedure should use “active” objects, and turns them inactive.

Transaction: A trace of execution of one or more transactions, including all the input and output objects for

one or more procedures.

Why many? To allow subroutine calls and cross contact calls.

Checkers: Code that takes the trace of execution of a single procedure and returns true if it conforms to the

contract.

Note: clients execute procedures, and pack transactions for checkers to check in shards.

c.T(x,y) -> z

[c, T, (x,y), z]

Sharded Byzantine Atomic Commit Protocol (SBAC)

BFT

BFT

BFT

BFT

BFT

BFT

Client

Shard 0

(hi)

Shard 1

(fi)

Shard 2

(ci)

Book(hi, fi, ci) -> ri

Issue Commit /

Abort. Lock.

Wait for decision from all

shards: all commit =

commit; otherwise abort.

Sequence to

mutate

shared state

Sequence to

mutate

shared state

Activate new

objects. Release

locks or invalidate.

(ci,ri)

SBAC guarantees either all process transaction (eventually) or none does. (Safety)

Liveness follows from the liveness of consensus within each shard.

(fi)

(hi)

checker

Performance (Summer 2017)

Validation: the more shards, the more transactions per second – linearly.

THE TRICKS THAT NEVER MAKE IT TO THE PAPER

SBAC in the real-world

Security Under Composition: an attack

Client

Shard 0

(x)

Shard 1

(y)

T(x,y) -> z

BFT

BFT

BFT

BFT

BFT

BFT

BFT

BFT

Adversary

records “Commit”

message from s0

Adversary

records “Commit”

message from s0

s1: Commit(T)

s1: Commit(T) s1: Abort(T)

(x)

(y,z)

Inconsistency: s0

aborts T, and s1

commits!

Solution: Associate with objects and transactions sequence numbers. Increment

Those wisely. And use them to discard replays. (See manuscript soon).

Performance improvements.

Problem: opening a lot of sockets is expensive. O(S2) in the number of shards per transaction.

Solution: Anyone can “drive this protocol” (thanks to Omniledger crew for this!)

BFT

BFT

BFT

BFT

BFT

BFT

Client

Shard 0

(hi)

Shard 1

(fi)

Shard 2

(ci)

Book(hi, fi, ci) -> ri

(ci,ri)

(fi)

(hi)

What is the client dies? No problem: anyone else can

continue the protocol. Nodes in Shards; third parties; other

clients that want to make progress …

Aggregate

signatures

here?

Optimistic:

send to one

node

Optimistic:

send to one

node

SBAC for fun, but mostly for profit.

BFT

BFT

BFT

BFT

BFT

BFT

Client

Shard 0

(fee)

Shard 1

(x)

Shard 2

(y)

Book(x, y, fee) -> z, fee’

(y,z)

(x)

(fee, fee’)

Problem: SBAC is an expensive protocol. Only execute for a fee!

Solution: make SBAC steps conditional on commit for fee shard.

Only make

effort if the fee

is committed

Design choice: consume

fee if commit, or always?

Why procedures vs checkers?

Privacy?

How to support light clients?

What if one or more shards do not have an

honest supermajority?

How to shard audit and verification?

How to assign nodes to shards?

Smart contract lifetime management?

Separate checkers from nodes?

Updating smart contracts?

Non-deterministic contracts?

Sybil attack resistant open system?

Proof of stake economics?

Dynamic fees according to congestion?

…

The joys of building real systems …

The missing details

@chainspace_io @chainspace_official medium.com/chainspacewww.chainspace.io

Thanks for listening

george@chainspace.io

